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Università degli Studi della Basilicata,
Italy
Hrushikesh N Mhaskar
California State University, USA
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ntroductionI

This Conference is an activity of the Jaen Approximation Project. Jaen Approximation
Project has organized ten editions of the Ubeda Meeting on Approximation and five editions
of the Jaen Conference on Approximation. It also issues the Jaen Journal on Approximation
since 2009.

The objective of these conferences is to provide a useful and nice forum for researchers in
the subjects to meet and discuss. In this sense, the conference program has been designed to
keep joined the group during four days with a program full of scientific and social activities.

The Conference will be devoted to some significant aspects on Approximation Theory,
Computer Aided Geometric Design, Numerical Methods and the Applications of these fields
in other areas.

It features seven invited speakers (Asuman G. Aksoy, Annie Cuyt, Kathy Driver, Dany
Leviatan, Carla Manni, Gerlind Plonka and Maria Skopina) who will give 50 minutes plenary
lectures. Researchers were invited to contribute with a talk or a poster. We have scheduled
16 talks and a poster session.

The Conference is held in Úbeda, what gives participants the opportunity to visit World
Heritage Sites and taste a wide culinary variety.

We hope that you all enjoy the Conference, both participants and accompanying people.
We are grateful to all those who have made this project a reality; the University of Jaén
(Vicerrectorado de Investigación and Departamento de Matemáticas), Diputación Provincial
de Jaén, Ayuntamiento de Úbeda and UNED. Here we emphasize our commitment to keep
on working to improve our university and our province.

The Organizing Committee
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cientific ProgramS

June, 28th-Sunday
21:30-14:00 Dinner

(Parador de Úbeda)

June, 29th-Monday
09:00-10:50 Summer solstice

(Sinagoga del agua)
10:30-11:15 OPENING CEREMONY
11:15-11:40 Coffee Break

SESSION 1
(Chairperson D. Leviatan)

11:40-12:30 Annie Cuyt (p. 5)
12:30-12:55 Christophe Rabut (p. 40)
12:55-13:20 O. Mula (p. 26)
13:20-13:45 Heinz-Joachim Rack (p. 41)
13:45-14:10 Georg Zimmermann (p. 47) U
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D
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14:30-15:00 Lunch
(Hotel Maŕıa de Molina)

20:00-21:00 Visit to Baeza
21:00-14:00 Cocktail
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SESSION 4
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11:15-11:40 Coffee Break

SESSION 5
(Chairperson J. Szabados)

11:40-12:30 Dany Leviatan (p. 7)
12:30-12:55 Hare Krishna Nigam (p. 28)
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SESSION 6
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10:00-10:50 Kathy Driver (p. 6)
10:50-11:15 Poster Session
11:15-11:40 Coffee Break

SESSION 6
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Session: 2nd-Thursday, 10:50–11:15,

Clotilde Mart́ınez (p. 23)
Teresa E. Pérez (p. 36)
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Bernstein’s lethargy theorem in Fréchet spaces

Asuman Güven Aksoy and Grzegorz Lewicki

Abstract

In this talk, we consider Bernstein’s Lethargy Theorem (BLT) [3] in the context of Fréchet
spaces. Let X be an infinite-dimensional Fréchet space and let V = {Vn} be a nested

sequence of subspaces of X such that Vn ⊆ Vn+1 for any n ∈ N and X =
⋃∞
n=1 Vn. Let

en be a decreasing sequence of positive numbers tending to 0. Under an additional natural
condition on sup{dist(x, Vn)}, we prove that, there exists x ∈ X and no ∈ N such that

en
3
≤ dist(x, Vn) ≤ 3en

for any n ≥ no. By using the above theorem, we prove both Shapiro’s [6], [1] and Tyurem-
skikh’s [7] theorems for Fréchet spaces. Considering rapidly decreasing sequences, other
versions of the BLT theorem [4] in Fréchet spaces will be discussed. We also give a theorem
improving Konyagin’s [5] result for Banach spaces.

Keywords: best approximation, Bernstein’s lethargy theorem, Fréchet spaces.
AMS Classification: 41A25, 41A50, 41A65.
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Exponential analysis, Sparse interpolation and Padé
approximation

Annie Cuyt and Wen-shin Lee

Abstract

A common underlying problem statement in many applications is that of determining the
number of components, and for each component the value of the frequency, damping factor,
amplitude and phase in a multi-exponential model. It occurs, for instance, in magnetic res-
onance and infrared spectroscopy, vibration analysis, seismic data analysis, electronic odour
recognition, keystroke eavesdropping, nuclear science, music signal processing, transient de-
tection, motor fault diagnosis, electrophysiology, drug clearance monitoring and glucose tol-
erance testing, to name just a few. The general technique of multi-exponential modeling

is closely related to what is commonly known as the Padé-Laplace method in approxima-
tion theory, and the technique of sparse interpolation in the field of computer algebra. The
problem of multi-exponential modeling is an inverse problem and therefore may be severely
ill-posed, depending on the relative location of the frequencies and phases. Besides the re-
liability of the estimated parameters, the sparsity of the multi-exponential representation
has also become important. A representation is called sparse if it is a combination of only
a few elements instead of all available generating elements. In sparse interpolation, the aim
is to determine all the parameters from only a small amount of data samples, and with a
complexity proportional to the number of terms in the representation. Despite the close con-

nections between these fields, there is a clear lack of communication and cross-fertilization
in the scientific literature. We present the basics of multi-exponential modelling, connect
the problem to sparse interpolation and show how to improve the technique using results
from Padé approximation theory: the conditioning is improved, the parameter detection is
validated and the convergence of the method is accelerated. The new algorithm is applied
to a number of challenging applications.

Annie Cuyt, Wen-shin Lee,
Dept of Mathematics and Computer Science,
University of Antwerp,
Middelheimlaan 1, B-2020 Antwerpen, Belgium.
annie.cuyt@uantwerpen.be
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Orthogonal polynomials and interlacing of zeros∗

Kathy Driver, Martin E. Muldoon and Kerstin Jordaan

Abstract

The interlacing of zeros of two polynomials of consecutive degree in an orthogonal se-
quence is a classical result that has important applications to Gauss quadrature. Stieltjes
extended the concept of interlacing to zeros of two orthogonal polynomials of non-consecutive
degree. In this more general context, common zeros of the two polynomials involved (if there
are any) play a critical role when interlacing of zeros is under consideration.

This talk will focus on sequences of Laguerre polynomials {L(α)
n }∞n=0, α fixed, α > −1.

Recent developments on the interlacing of zeros of orthogonal polynomials from different
sequences within this classical family will be discussed and the connection between the
interlacing of zeros and the existence of common zeros will be highlighted. The mixed
three term recurrence relations satisfied by Laguerre polynomials corresponding to different
values of the parameter α are used to derive bounds for the largest and smallest zeros of
Laguerre polynomials. We discuss the interlacing of zeros, and the co-primality, of the
quasi-orthogonal Laguerre sequences {L(α)

n }∞n=0 for α fixed, −2 < α < −1.

Keywords: special functions and approximation.
AMS Classification: 41A28, 41A40, 41A60.

Kathy Driver,
University of Cape Town,
South Africa.
Kathy.Driver@uct.ac.za

Martin E. Muldoon,
York University,
Canada.
muldoon@yorku.ca

Kerstin Jordaan,
University of Pretoria,
South Africa.
kjordaan@up.ac.za

∗National Research Foundation of South Africa
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Comparing the degrees of unconstrained and
constrained approximation by polynomials

D. Leviatan

Abstract

It is quite obvious that one should expect that the degree of constrained approximation
be worse than the degree of unconstrained approximation. However, it turns out that in
certain cases we can deduce the behavior of the degrees of the former from information
about the latter.

Let En(f) denote the degree of approximation of f ∈ C[−1, 1], by algebraic polynomials
of degree < n, and assume that we know that for some α > 0 and N ≥ 1,

nαEn(f) ≤ 1, n ≥ N .

Suppose that f ∈ C[−1, 1], changes its monotonicity or convexity s ≥ 0 times in [−1, 1]
(s = 0 means that f is monotone or convex, respectively). We are interested in what
may be said about its degree of approximation by polynomials of degree < n that are
comonotone or coconvex with f . Specifically, if f changes its monotonicity or convexity at
Ys := {y1, . . . , ys} (Y0 = ∅) and the degrees of comonotone and coconvex approximation are

denoted by E
(q)
n (f, Ys), q = 1, 2, respectively. We investigate when can one say that

nαE(q)
n (f, Ys) ≤ c(α, s,N ), n ≥ N ∗,

for some N ∗. Clearly, N ∗, if it exists at all (we prove it always does), depends on α, s and
N . However, it turns out that for certain values of α, s and N , N ∗ depends also on Ys, and
in some cases even on f itself, and this dependence is essential.

Dany Leviatan,
University of Tel-Aviv, Israel.
leviatan@post.tau.ac.il
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Isogeometric methods based in generalized B-splines

Carla Manni

Abstract

Isogeometric analysis (IgA) is a well-established paradigm for the analysis of problems
governed by partial differential equations (PDEs). It provides a design-though-analysis con-
nection by exploiting a common representation model. This connections is achieved by using
the functions adopted in Computer Aided Design (CAD) systems not only to describe the
domain geometry, but also to represent the numerical solution of the differential problem.
CAD software, used in industry for geometric modeling, typically describes physical domains
by means of tensor-product B-splines and their rational extension, the so-called NURBS. In
its original formulation IgA is based on the same set of functions, see [1,2].

Nonetheless, the IgA paradigm is not confined to B-splines, NURBS and their local-
ized extensions. Other possible discretization techniques have also received some attention;
among the others, we mention generalized splines [3].

The so-called generalized B-splines (GB-splines) are piecewise functions with sections
in more general spaces than algebraic polynomial spaces (like classical B-splines). Suitable
selections of such spaces –typically including trigonometric or exponential functions– allow an
exact representation of polynomial curves, conic sections, helices and other profiles of salient
interest in applications. GB-splines possess all fundamental properties of algebraic B-splines:
recurrence relation, compact minimum support, local linear independence, (non-stationary)
subdivision rule, etc. Moreover, contrarily to rational extensions like NURBS, they behave
completely similar to B-splines with respect to differentiation and integration, see [3] and
references therein. Finally, GB-splines support (locally refined) hierarchical structures the
same way as classical polynomial B-splines [4].

Tensor-product GB-splines and their hierarchical counterpart have been used in IgA
following the Galerkin or collocation formulation, see [3,4,5] and references therein. Thanks
to their complete structural similarity with classical B-splines (which is based on a Bernstein-
like representation), GB-splines are plug-to-plug compatible with B-splines in IgA. On the
other hand, when dealing with GB-splines, the section spaces can be selected according to
a problem-oriented strategy taking into account the geometrical and/or analytical peculiar
issues of the specific addressed problem. The finite-tuning of the approximation spaces
generally results in a gain from the accuracy point of view.

8
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In this talk we review some isogeometric methods based on trigonometric and exponential
generalized spline spaces for their relevance in practical applications.

Bibliography
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[3] C. Manni, F. Pelosi and M.L. Sampoli, Generalized B-splines as a tool in isogeo-
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[4] C. Manni, F. Pelosi and H. Speleers, Local hierarchical h-refinemements in IgA
based on generalized B-splines in M. Floater et al. (eds.), Mathematical Methods for
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Carla Manni,
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Deterministic sparse FFT algorithms∗

Gerlind Plonka

Abstract

We consider some ideas to improve the well-known (inverse) FFT algorithm to compute
a vector x ∈ CN from its Fourier transformed data. It is known that the FFT of length
N needs O(N logN) arithmetical operations. However, if the resulting vector x is a-priori
known to be sparse, i.e., contains only a small number of non-zero components, the question
arises, whether we can do this computation in an even faster way. In recent years, different
sublinear algorithms for the sparse FFT have been proposed, most of them are randomized.
We want to concentrate on deterministic sparse FFT algorithms and consider especially
vectors with short support and sparse positive vectors. The talk is based on joint work with
Manfred Tasche and Katrin Wannenwetsch.

Keywords: discrete Fourier transform, sparse Fourier reconstruction, sparse FFT.
AMS Classification: 65T50, 42A38.

Bibliography
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∗We acknowledge financial support by the German Research Foundation (project PL 170/16-1).
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Exact and Falsified Sampling Approximation

Maria Skopina

Abstract

We study approximation properties of the expansions
∑

k∈Zd ckϕ(M jx + k), where M
is a matrix dilation, ck is either the sampled value of a function f at M−jk or its integral
average near M−jk (falsified sampled value). Error estimations in Lp-norm, 2 ≤ p ≤ ∞,
are given in terms of the Fourier transform of f . The approximation order depends on the
decay of f̂ and on the order of Strang-Fix condition for φ. The estimates are obtained for a
wide class of ϕ including both compactly supported and band-limited functions. The band-
limited functions ϕ provide an arbitrarily large approximation order, while the compactly
supported functions are more preferable for implementations. For the one-dimensional case,
we also constructed sampling wavelet decompositions, i.e. frame-like wavelet expansions
with coefficients interpolating a signal f at the dyadic points.

Maria Skopina,
St. Petersburg State University, Russia,
skopina@MS1167.spb.edu
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Some remarks on the closure of translation-dilation
invariant linear spaces of polynomials

J. M. Almira and L. Székelyhidi

Abstract

At the 49th International Symposium on Functional Equations in Graz, Mariatrost, Aus-
tria, 2011 and later at the 14th International Conference on Functional Equations and In-
equalities in Bȩdlewo, Poland, 2011 the second author proposed the following problem: As-
sume that V is a linear space of real polynomials in n variables which is translation invariant.
Suppose moreover that the sequence (pn) in V converges pointwise to a polynomial p. Is
it true that p is in V ? Despite several efforts of different researchers this question has still
remained open. In this note we solve the problem in the positive for the special case when
V is a translation-dilation invariant linear space of polynomials.

Keywords: polynomials, translation invariance, dilation invariance, pointwise conver-
gence, difference operators.

AMS Classification: primary 41A10, 40A30; secondary 39A70.

Bibliography

[1] A. Pinkus, TDI-Subspaces of C(Rd) and some Density Problems from Neural Networks,
Journal of Approximation Theory 85 (3) (1996) 269–287.
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Near-optimal adaptive approximations∗

Peter Binev

Abstract

We consider approximation algorithms that are based on a posteriori information about
the local errors. Given a budget N of total number of degrees of freedom, we want to
build a partition of the domain and assignments of a number of degrees of freedom for each
element of this partition in such a way that the resulting error of approximation will be
comparable with the best possible one. In Finite Element Methods this type of adaptive
approximation is known as h-adaptive, in case the numbers of degrees of freedom for each
element of the partition is the same, or hp-adaptive if the number of degrees of freedom may
vary. We present algorithms in a very general setup for both the h-adaptive and hp-adaptive
cases and prove that they provide a near-best approximation in a sense that the error and
the number of degrees of freedom are both within a multiplicative constants from the best
possible approximation that uses full knowledge about the function. The results of this talk
will appear in [1].

Keywords: adaptive algorithms, finite element methods, h-adaptivity, hp-adaptivity,
tree-based algorithms, near-best approximation, instance optimality.

AMS Classification: 41A15, 41A63, 65D15, 65M55, 68Q32, 68W25, 97N50.
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Orthogonal polynomials on the unit ball∗

A. M. Delgado, L. Fernández, T. E. Pérez and M. A. Piñar

Abstract

In this talk we present a study of the Multivariate Sobolev Orthogonal Polynomials with
respect to the Sobolev inner product on the unit ball given by

〈f, g〉Sµ =
1

ωµ

∫
Bd
f(x)g(x)(1− |x|2)µdx+

λ

σd

∫
Sd−1

∂f

∂n
(ξ)

∂g

∂n
(ξ)dσ(ξ),

where µ > −1, λ > 0, dσ(ξ) denotes the surface measure on the unit sphere Sd−1, σd and
ωµ are normalizing constants, and ∂

∂n
stands for the outward normal derivative operator.

An explicit exppresion in terms of univariate Sobolev orthogonal polynomials and spherical
harmonics is given. Using this explicit exppresion, some properties of the polynomials, kernel
functions and Christoffel functions are explored.

Keywords: multivariate orthogonal polynomials, normal derivative, kernel function,
Christoffel function.

AMS Classification: 33C50, 42C10.
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Best L1 approximation and locally computed L1 spline
fits of the Heaviside function and multiscale univariate

datasets

Laurent Gajny, Olivier Gibaru and Eric Nyiri

Abstract

Best L1 approximations of the Heaviside function in Chebyshev and weak-Chebyshev
spaces has a Gibbs phenomenon. It has been shown in the nineties for the trigonometric
polynomial [1] and polygonal line cases [2]. By mean of recent results of characterization
of best L1 approximation in Chebyshev and weak-Chebyshev spaces [3] that we recall, this
Gibbs phenomenon can also be evidenced in the polynomial and polynomial spline cases. It
can be reduced in this latter case by using L1 spline fits [4] which are best L1 approximations
in an appropriate spline space obtained by the reunion of L1 interpolation splines [5]. These
splines are known to preserve the shape of the Heaviside function [6]. We prove here the
existence of L1 spline fits. Their major disadvantage is that obtaining them can be time
consuming. Thus we propose a sliding window method on seven knots which is as efficient
as the global method but within a linear complexity on the number of spline knots. This
algorithm can also be fairly applied to the problem of approximation of datasets with abrupt
changes of magnitude.

Keywords: L1 norm, shape preserving approximation, polynomial spline, Heaviside
function.

AMS Classification: 41A10, 41A15, 41A50, 41A52.
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A note on the existence of certain extremal Lipschitz
functions

Miguel A. Jiménez-Pozo

Abstract

For every 0 < β < α ≤ 1, the following inclusions hold strictly,

lip1 ⊂ C ′ ⊂ D ⊂ Lipα ⊂ lipβ ⊂ C ⊂ B,

where the symbols denote the traditional linear spaces of real valued 2π–periodic constants,
differentiable, Lipschitz, continuous or bounded functions. As known, there exists a function
f ∈ C[0, 2π] that is not differentiable at any point of its domain. We refine this result by
proving the existence of a function f ∈ lipβ[0, 2π] that is not locally in lipβ at any point.

Miguel Antonio Jiménez-Pozo,
Benemérita Universidad Autónoma de Puebla,
Puebla, México.
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Orthogonal polynomials on the ball with an extra term
on the sphere∗

Clotilde Mart́ınez and Miguel A. Piñar

Abstract

In this work we study a family of mutually orthogonal polynomials on the unit ball with
respect to an inner product which includes an additional term on the sphere. First, we
will get connection formulas relating classical multivariate orthogonal polynomials on the
ball with our family of orthogonal polynomials. Then, using the representation of these
polynomials in terms of spherical harmonics differential properties will be deduced.

Keywords: orthogonal polynomials in several variables, partial differential equations.
AMS Classification: 42C05, 33C50.
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Some new interpolation processes

G. Mastroianni and I. Notarangelo

Abstract

The polynomial approximation of functions defined on the real semiaxis and having
exponential growth at the endpoints has received little attention in the literature. Only
recently, in [2] and [1], some weighted polynomial inequalities and estimates for the best
weighted approximation, with suitable moduli of smoothness and related K−functionals,
have been proved.

In this talk we will introduce a new interpolation process for these classes of functions,
showing that it converges with the order of the best approximation in weighted Lp−metric,
1 < p <∞.

Keywords: Weighted polynomial approximation, exponential weights, unbounded in-
terval, real semiaxis, Lagrange interpolation.

AMS Classification: 41A10, 41A05.
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Approximation strategies to couple data assimilation
with model-driven simulations∗

O. Mula

Abstract

The accurate approximation of physical systems is a central task in numerous branches
of science and engineering. It can be addressed through two main paradigms that have
traditionally been studied separately: data-driven and model-based methods. A rather
recent trend is to couple both methodologies so as to correct deficient or inaccurate models
through measurements or to regularize estimation problems through a model. Although some
aspects of this topic are covered by uncertainty quantification, the works that we would like
to present in this talk have a somewhat different flavor. Here is a brief summary of the
contents.

Our general setting is the following. Let H be a Hilbert space of functions over a domain
D ∈ Rp, p ∈ N∗. We have a function u ∈ H that we want to approximate. This function is
a field of interest of a physical system taking place in D. The tools for our reconstruction
are the knowledge that u belongs to some compact set M⊂ H and the knowledge of some
measurements of u, that we denote λi(u), i = 1, ...,M in the form of linear functionals
applied to u. For example, we can assume that u is the solution of a parameter dependent
PDE, where we do not know the parameters. In this case M is the family of solutions to
the PDE when the parameters vary. The M linear functionals come from a dictionary Σ of
the dual of H.

The problem has so far been addressed (see [1, 2, 3, 4]) by searching (in a greedy fashion)
suitable N dimensional spaces XN = {ϕi ∈ X}Ni=1 so that any u ∈M is approximated by

u ≈
N∑
j=1

cj(u)ϕj,

where, for 1 ≤ j ≤ N , cj(u) is a linear combination of λi(u), 1 ≤ i ≤ M . The M “most
suitable” linear functionals of Σ are also traditionally searched in a greedy fashion.

∗The authors would like to thank the Interdisciplinary Mathematics Institute (IMI) of the University of
South Carolina and the Institut für Geometrie und Praktische Mathematik (IGPM) of the RWTH-Aachen
University for having hosted them during the preparation of this work.
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One of the main issues that the already existing approaches present is that the behavior
with N of the norm of the approximation operators is not properly understood. It is also
well-known that cases in which it blows up could occur, which would dramatically degrade
the quality of approximation. In our talk, after recalling more in detail this issue, we will
present an ongoing work with Prof. Binev in which we build a new approximation strategy
based on projection that avoids the presence of this type of uncontrolled terms in the error
estimates and provides, in turn, more robustness. We will see that our procedure involves a
greedy algorithm whose analysis presents some new challenges with respect to other settings
in which greedy algorithms are classically employed.

Keywords: data assimilation, reduced basis, greedy algorithm, generalized empirical
interpolation, PBDWF.

AMS Classification: 41A25, 41A45.
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Degree of approximation of a function and a conjugate
function belonging to the Lip(α, r) class by (E, q)(C, 1)

product means

Hare Krishna Nigam

Abstract

In the present paper, two new theorems on degree of approximation of a function f and
its conjugate function f̄ , belonging to the Lip(α, r) class by (E, q)(C, 1) product means are
established.

Keywords: degree of approximation, Lip(α, r) class of function, (E, q)(C, 1) product
means, Fourier series, conjugate Fourier series, Lebesgue integral.
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Lagrange–Hermite interpolation processes on the real
semiaxis∗

G. Mastroianni, I. Notarangelo and P. Pastore

Abstract

In this talk we discuss the weighted polynomial interpolation of continuous functions on

[0,+∞), which are (r − 1)−times differentiable at 0 and can increase with order O
(

ex
β/2
)

,

β > 1/2, for x→∞.
The presence of the derivatives of the function in 0 leads in a natural way to the construc-

tion of Lagrange–Hermite polynomial Lm,r(w, f) based at generalized Laguerre zeros, 0 as
a multiple node and another additional node (see also [3]). Applying the operator Lm,r(w)
to a suitable finite section of the function f , we obtain a new interpolation process, that we
will denote by L∗m,r(w) (see [1]).

This new operator is not a projector into the set of all polynomials of degree at most
m + r, Pm+r, but on a special subset P∗m,r ⊂ Pm+r, where

⋃
mP∗m,r is dense in weighted

Lp− spaces. We show that, under proper necessary and sufficient conditions, this new
interpolation process converges in weighted Lp−metric, 1 < p < ∞, with the order of the
best weighted polynomial approximation (that can be found in [2]).

Keywords: weighted polynomial approximation, Hermite–Lagrange interpolation, gen-
eralized Laguerre weights, unbounded interval, real semiaxis.
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Hole filling splines with volumen constrains by radial
basis functions∗

M. Pasadas, M.A. Fortes, P. González and A. Palomares

Abstract

In many situations we have to fill one or several holes of certain function defined in a
domain where there is a lack of information inside some sub-domains. For this we have
developped some methods (see [1, 2, 3, 4]).

But in some practical cases we just know some specific geometrical constraints, of in-
dustrial or design type, as the special case of a specified volume inside each one of these
sub-domains. In this work we study this particular issue, giving both some theoretical and
computational results that assures the feasibility of the corresponding procedures.

The studied method in this work manage to find a function of a vector space generated
by a radial function basis that minimizes certain quadratic functional that includes some
terms associated with the volume constrain and the usual semi-norms in a Sobolev space.
In this way, some approximation methods have been developed (see [5, 6]).

In next Section 2 we establish some general and specific notation as the functional spaces
where we obtain the reconstructed functions. In section 3 we pose the problem of finding a
function that fill a given hole and fulfils a volume restriction . In Section 4 we establish the
computation algorithm and a convergence result.

§1. Preliminaries and notation

Let m ≥ 1 be a positive integer and let Πm−1(R2) denote the space of polynomials on R2 of

degree at most m−1 whose dimension is d(m) =
m(m+ 1)

2
. Let {q1, . . . , qd(m)} the standard

basis of Πm−1(R2) .
Consider the following function

φε(t) = − 1

2ε3

(
e−ε
√
t + ε
√
t
)
, ε ∈ R+

∗This work has been supported by the Junta de Andalućıa (Research group FQM/191).
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and the following radial function

Φε(x) = φε(〈x〉22) = − 1

2ε3

(
e−ε〈x〉2 + ε〈x〉2

)
, x ∈ R2,

where 〈 · 〉k is the Euclidean norm in Rk.
Let Ω be an open bounded nonempty subset of R2 with a Lipschitz-continuous boundary.
We will use the classical notation Hk(Ω) to denote the usual Sobolev space of all dis-

tributions u which all of whose derivatives up to and including order k are in the classical
Lebesgue space L2(Ω).

The Sobolev space Hk(Ω) is a Hilbert space equipped with the inner semi-products given
by

(u, v)` =
∑
|α|=`

∫
Ω

Dαu(x)Dαv(x)d, 0 ≤ ` ≤ k,

the semi-norms given by |u|` = (u, u)
1
2
` , for all ` = 0, . . . , k, and the norm ‖u‖k =

(∑
`≤k

|u|2`

) 1
2

.

§2. Hole filling meshfree smoothing spline surface with

volume constraint

For any N ≥ d(m), let us an arbitrary set AN = {a1, . . . , aN} ⊂ R2 such that it contains a
Πm−1(R2)-unisolvent subset (i.e., if q ∈ Πm−1(R2) and for all a ∈ AN , q(a) = 0 then q = 0).

Let h = h(N) be the fill-distance from AN to Ω defined by

h = sup
x∈Ω

inf
a∈AN

〈x− a〉2

and suppose that

h = o(N), N → +∞. (1)

On other hand, for any M ≥ N let HM (the hole) be an open nonempty subset of Ω
verifying

µ(HM) = o(1), M → +∞, (2)

where µ represents the Lebesgue measure.
For any M ≥ N , let us consider an arbitrary set BM = {b1, . . . , bM} ⊂ Ω−HM such that

the fill-distance η = η(M) from BM to Ω−HM verifies

η = o(M), M → +∞, (3)

and BM contains a Πm−1(R2)-unisolvent subset.
Let V be a given non-negative real number.
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Now, for τ = (τ0, τ1, . . . , τm) ∈ Rm+1, with τ0, . . . , τm−1 ≥ 0 and τm > 0, let us consider
the functional J : Hm(Ω)→ R defined by

J(v) = 〈ρ(v − f)〉2M + τ0(

∫
HM

v(x)dx− V )2 +
m∑
i=1

τi|v|2i ,

being ρ : Hm(Ω)→ RM given by ρv = (v(bi))i=1,...,M .
Observe that the first term of J measures how well (in the least squares sense) v ap-

proximates the values of f over the set BM , the second term measures how well the volume
of v approximates the value V over H while the last term of the sum represent some “mini-
mal energy condition” over the semi-norms | · |i, i = 1, . . . ,m, all of them weighted by the
parameter vector τ .

Let HN the finite-dimensional space generated by the functions

{q1, . . . , qd(m),Φε(· − a1), . . . ,Φε(· − aN)}.

It verifies that HN is a finite dimensional subspace of Hm(Ω).

Theorem 1. There exists a unique element σM ∈ HN such that

J (σ) ≤ J (v), ∀ v ∈ HN , (4)

which is also the solution of the following variational problem: Find σ ∈ HN such that

〈ρσ, ρv〉M + τ0

∫
HM

σ(x)dx

∫
HM

v(x)dx+
m∑
i=1

(v, σ)i =

〈ρf, ρv〉M + τ0V

∫
HM

v(x)dx,

(5)

for all v ∈ HN .

§3. Computation and convergence

Let σ ∈ HN the unique solution of Problem (4). Then σ =

N+d(m)∑
i=1

αiωi, with α =

(α1, . . . , αN+d(m)) ∈ RN+d(m) and

ωi =

{
Φτ (· − ai), i = 1, . . . , N,
qi−N , i = N + 1, . . . , N + d(m).

By substituting in (6) we find that α is the unique solution of the linear system

(AAt + τ0I0I
t
0)

m∑
i=1

τiRi)α = A(ρf)t + τ0V It0,
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where

A = (ρωi)
t
i=1,...,N+d(m), I0 = (

∫
HM

ωi(x)dx)1≤i≤N+d(m),

Rk = ((ωi, ωj)k)1≤i,j≤N+d(m), k = 1, . . . ,m.

Theorem 2. Let us suppose that, in addition to hypotheses (1-3), it holds that

τm = o(M), M → +∞, (6)

τi = o(τm), M → +∞, i = 1, . . . ,m− 1, (7)

Mh2m

τm
= o(1), M → +∞ (8)

Let σM ∈ HN the solution of (6) for V =

∫
HM

f(x)dx. Then

lim
M→+∞

‖f − σM‖m = 0.

Remark 3. Observe that from (6) and (7) we obtain that h → 0 and thus N → +∞ as
M → +∞.

Keywords: approximation, filling holes, splines, variational methods, radial function
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On two variable Koornwinder polynomials and three
term relations∗

Misael Marriaga, Teresa E. Pérez and Miguel A. Piñar

Abstract

In 1975, T. Koornwinder introduced a method to generate bivariate orthogonal polyno-
mials by using orthogonal polynomials in one variable. In this work, we study the explicit
expressions for the matrix coefficients in their three term relations by using the the three
term recurrence relations for the involved univariate orthogonal polynomials. Moreover,
some nice examples are considered.

Keywords: orthogonal polynomials in two variables, three term relations.
AMS Classification: 42C05, 33C50.

Bibliography

[1] C. F. Dunkl and Y. Xu, Orthogonal polynomials of several variables, 2nd edition,
Encyclopedia of Mathematics and its Applications, vol. 155, Cambridge Univ. Press,
2014.

[2] T. H. Koornwinder, Two variable analogues of the classical orthogonal polynomials,
in Theory and Application of Special Functions, R. Askey Editor, Academic Press
(1975), 435–495.
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Asymptotics of the Christoffel functions on the square∗

M. Alfaro, A. Peña, M. A. Piñar and M. L. Rezola

Abstract

A well-known result in the univariate theory of orthogonal polynomials (see [2]) asserts
that if a weight ω is smooth enough in (−1, 1), then the corresponding Christoffel functions
satisfy

lim
n→∞

nλn(ω, x) =
ω(x)

ω0(x)
, (1)

and the convergence is uniform in compact subsets of (−1, 1), where ω0 denotes the Cheby-
shev weight: ω0(x) = 1

π
√

1−x2 , x ∈ (−1, 1) .
Having in mind this result, it is natural to expect that for sufficiently “regular” weights

in the bivariate case, it holds

lim
n→∞

(
n+ 2

n

)
Λn(W ;x, y) =

W(x, y)

W0(x, y)
, (2)

uniformly in compact subsets of Ω , where W0 is an analogue of the Chebyshev weight for this
domain. However ssymptotics for the multivariate Christoffel functions have been established
just in a very few cases (see [1])

• In the unit ball in Rd, for Jacobi weights, and weights that satisfy some structural
restriction, such as being radially or centrally symmetric.

• In the standard simplex in Rd for Jacobi weights.

We will establish (2) for weights on the square S. Here, the analogous of Chebyshev
weight is given by

W0(x, y) =
1

π
(1− x2)−1/2, (1− y2)−1/2 , −1 < x < 1 , −1 < y < 1 .

which is normalized in such a way that
∫
S
W0(x, y) dx dy = 1 .
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Departamento de Matemtica Aplicada,
Universidad de Granada (Spain).
mpinar@ugr.es



VI Jaen Conference on Approximation Theory

Úbeda, Jaén, Spain, June 28th-July 3rd, 2015 

Can we cut down Runge oscillations?

Christophe Rabut

Abstract
Given n+1 data points, we show in this talk various polynomials interpolating these data

which oscillate less, or far less than the usual (unique) degree n polynomial interpolating
the data. At this stage of the work on this subject, this is only experimental trials which
however seem to validate the various ideas presented to cut down oscillations, still using
true polynomial interpolation. So we do not have any convergence result (even if we have
some numerical evidence about that). Just to keep on with some kind of suspense, I prefer
not expliciting them here. I intend to ask the audience if they know or not the methods
(probably three methods) I will present during the talk.

For a better computation stability, all computations are done in the Bernstein basis.

Keywords: Runge phenomenon, polynomial interpolation, polynomials with variational
properties.
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Sharp Szegö-type coefficient estimates for multivariate
polynomials

Heinz-Joachim Rack

Abstract

Let Pn denote a real univariate polynomial of degree ≤ n with Pn(x) =
∑n

k=0 an,kx
k, n ≥

1, and let Tn with Tn(x) =
∑n

k=0 tn,kx
k and explicitly known tn,k’s denote the n-th Chebyshev

polynomial of the first kind [23]. V. A. Markov in his celebrated paper of 1892 [7, pp. 80
- 81] has discovered a two-staged extremal coefficient property of Tn resp. of Tn−1 when
compared to an arbitrary Pn satisfying ||Pn||∞ ≤ 1 on the interval [−1; 1], where || · ||∞
denotes the uniform norm, see also [9, p. 384], [22, pp. 672 - 673], [23, p. 147]:

|an,k| ≤ |tn,k|, if n− k is even, (1)

|an,k| ≤ |tn−1,k|, if n− k is odd (2)

(here (2) is a corollary of (1)). The problem to find the sharp upper bound for |a2,k|, k ∈
{0, 1, 2}, had been explicitly posed by the renowned chemist Mendeleev in 1887 [8, p. 289],
[16]. The famous case k = n (i.e. |an,n| ≤ |tn,n| = tn,n = 2n−1) traces back to Chebyshev’s
pioneering paper of 1854 [2, p. 123], see also [9, p. 385; p. 423], [20], [23, p. 68]. An
inequality of Szegö for pairs of consecutive coefficients of Pn (with ||Pn||∞ ≤ 1), as commu-
nicated in 1947 by Erdös [3, p. 1176], see also [16] and [22, Theorem 16.3.3], ingeniously
extends (1):

|an,k−1|+ |an,k| ≤ |tn,k|, if n− k is even. (3)

We have in turn found extensions of (3) to complementary pairs |an,k|+|an,k+1| of consecutive
coefficients of Pn, and more generally, to pairs of coefficients of Pn (with ||Pn||∞ ≤ 1) which
need not be adjacent to each other:

|an,k|+ |an,j| ≤ |tn,k|, if n− k is even and n− j is odd with k + 1 ≤ j, (4)

|an,j|+ |an,k| ≤ |tn,k|, if n− k is even and n− j is odd with j ≤ k − 3, (5)

see [19, 21] for accessory assumptions on k and n. In [11] - [18] we have considered gen-
eralizations of (1), (2), (3) to multivariate polynomials, see also [1, 4, 5, 6, 10, 24]. In the
present talk we will provide generalizations of (4), (5) to multivariate polynomials.
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polynomials in one and several variables, East J. Approx. 14 (2008), 319–352.

[17] H.-J. Rack, On the length and height of Chebyshev polynomials in one and two
variables, East J. Approx. 16 (2010), 35–91.

[18] H.-J. Rack, V. A. Markov’s inequality for the coefficients of bounded multivariate
polynomials, Open Problem in Constructive Theory of Functions (Sozopol 2010), Proc.
Conf. in Memory of B. Bojanov (G. Nikolov and R. Uluchev, Eds.), Prof. M. Drinov
Acad. Publ. House, Sofia (2012), 410–413.

[19] H.-J. Rack, On an extremal property of the Chebyshev polynomials: Maximizing pairs
of coefficients of bounded polynomials in Constructive Theory of Functions (Sozopol
2010), Proc. Conf. in Memory of B. Bojanov (G. Nikolov and R. Uluchev, Eds.), Prof.
M. Drinov Acad. Publ. House, Sofia (2012), 286–317.

[20] H.-J. Rack, Variation on a theme of Chebyshev: Sharp estimates for the leading
coefficients of bounded polynomials, Dolomites Res. Notes Approx. 6 (2013), 101–119.

[21] H.-J. Rack, Companion theorems to G. Szegö’s inequality for pairs of coefficients of
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Optimal cubic Lagrange interpolation: extremal node
systems in [-1, 1] with minimal Lebesgue constant

Heinz-Joachim Rack and Robert Vajda

Abstract

A two-fold solution to the cubic case of optimal polynomial Lagrange interpolation is
given. In particular, two explicit analytical descriptions are provided for the uncountable
infinitely many extremal 4-point node configurations in [−1, 1] which all lead to the (known)
minimal Lebesgue constant of cubic Lagrange interpolation. The proofs are guided by sym-
bolic computation. In closing, the quadratic and the quartic case will be briefly touched
upon.

Keywords: constant, cubic, extremal, interpolation, Lagrange interpolation, Lebesgue
constant, minimal, node, node system, optimal, point, polynomial, symbolic computation.
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Interpolation on several intervals∗

József Szabados

Abstract

Approximation theoretic problems related to a set of finitely many intervals on the real
line usually constitute unexpected difficulties. Markov and Bernstein type inequalities for
derivatives of polynomials have been thoroughly investigated. In this talk we initiate a
generalization of linear operators approximating continuous functions. In particular, we
consider the order of magnitude of the Lebesgue constant of Lagrange interpolation, it being
the deciding factor of convergence of the interpolation process. It turns out that, apart from
the simplest case of two intervals of equal lengths, the problem of constructing good systems
of points of interpolation is difficult. The main tool in this respect will be the so-called T-
polynomials introduced by Franz Peherstorfer. Hermite–Fejér interpolation on two intervals
of equal length will also be considered.

Most of the talk is based on joint works with Alexey Lukashov and András Kroó.

Keywords: Lagrange interpolation, Lebesgue constant, T-polynomial, Hermite–Fejér
interpolation.
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Progress on the Gasca-Maeztu Conjecture

Hakop Hakopian, Kurt Jetter and Georg Zimmermann

Abstract

An n-poised set in two dimensions is a set of nodes admitting unique bivariate interpo-
lation with polynomials of total degree at most n. We are interested in poised sets with the
property that all fundamental polynomials are products of linear factors. In 1982, M. Gasca
and J. I. Maeztu [1] conjectured that every such set necessarily contains n+1 collinear points.
The case n = 4 was proved for the first time in 1990 by J. R. Busch [2], later with different
methods by J. M. Carnicer and M. Gasca [3], and later again with different methods by the
authors [4]. The case n = 5 was shown by the authors in [5]. We present the latest progress
in the attempt to prove the general result.

Keywords: polynomial interpolation, Gasca-Maeztu conjecture, fundamental polyno-
mial, maximal line, poised set.
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