Jaen J. Approx. 2(1) (2010), 31-49

Jaen Journal

on Approximation

Some remarks on quadrature formulae

Péter Vértesi

Abstract

Motivated by the works of L. Fejér, G. Szegö and others, we introduce the quasipositive interpolatory quadratures and prove some theorems. Among others, in a way, we answer certain generalizations of two conjectures raised respectively by G. Milovanovic and W. Gautschi in [5].

Keywords: Interpolatory quadratures, Jacobi polynomials, Cotes numbers. **MSC:** Primary 41A55; Secondary 41A05.

§1. Introduction. Notations. Some preliminary results

1.1. Let

$$Q_n(X, v, f) = \sum_{k=1}^n \lambda_{kn}(X, v) f(x_{kn})$$

be an interpolatory quadrature (IQ) for $\int_{-1}^{1} f(x)v(x)dx$ which means that it is exact for polynomials of degree n-1, i.e.

$$Q_n(X, v, x^r) = \int_{-1}^1 x^r v(x) dx, \quad r = 0, 1, \dots, n-1.$$
 (1.1)

Communicated by

G. López Lagomasino

Received March 5, 2009 Accepted October 14, 2009

