Jaen J. Approx. 11(1-2) (2019), 91–100

Jaen Journal

on Approximation

Best coapproximation in certain metric spaces

Sh. Al-Sharif, A. Ababneh and M. Al-qahtani

Abstract

Let X be a Banach space, (I,μ) be a finite measure space and G be a closed subspace of X. In this paper, we study the problem of best coapproximation in the metric space $L^p(I,X)$, $0 , as a special case of the problem of coproximity of <math>L^\varphi(I,G)$ in $L^\varphi(I,X)$ whenever G is coproximinal in X, where φ is an increasing continuous subadditive function on $[0,\infty)$ with $\varphi(0)=0$, and $L^\varphi(I,X)$, the space of all X-valued strongly measurable functions on I with $\int\limits_I \varphi \, \|f(t)\| \, dt < \infty$.

Keywords: metric projection, coapproximation.

MSC: 46B50, 41A65.

§1. Introduction

A function $\varphi:[0,\infty)\to[0,\infty)$ is called a modulus function if φ is continuous, increasing, subadditive and satisfies $\varphi(x)=0$ if and only if x=0. The functions $\varphi(x)=x^p$, 0< p<1, and $\varphi(x)=\log(x+1)$ are examples of modulus functions. In fact if φ is a modulus function, then $\psi(x)=\frac{\varphi(x)}{1+\varphi(x)}$ is also a modulus function.

Communicated by

M. A. Jiménez-Pozo

Received July 3, 2018 Accepted November 13, 2019