

LIX OLIMPIADA MATEMÁTICA ESPAÑOLA

Fase local, curso 2022 - 2023

Mañana del viernes 20 de enero de 2023 Primera sesión

Problema 1. Sea n un entero positivo. Cada uno de los números $1, 2, 3, \ldots, 2023$ se pinta de un color a escoger entre n distintos. Una vez coloreados, se observa que cualquier par (a, b), con a < b y de manera que $a \mid b$, satisface que a y b son de distinto color. Encontrar el menor valor de n para el cuál esta situación es posible.

Problema 2. Sea $n \ge 3$ un entero positivo. Los primeros n enteros positivos, $1, 2, \ldots, n$, se escriben en una pizarra. María realiza el siguiente proceso tantas veces como quiera: primero elige dos números en la pizarra, y luego los reemplaza con aquellos que resultan de sumarle a ambos un mismo entero positivo. Determinar todos los enteros positivos n para los que María puede conseguir, repitiendo este proceso, que todos los números de la pizarra sean iguales.

Problema 3. Decimos que una terna de números reales (a, b, c), todos distintos de cero, es local si

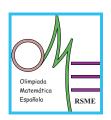
$$a^{2} + a = b^{2}$$

$$b^{2} + b = c^{2}$$

$$c^{2} + c = a^{2}$$

- (a) Probar que si (a, b, c) es local, entonces (a b)(b c)(c a) = 1.
- (b) Sea $A_1A_2...A_9$ un eneágono regular (polígono regular de 9 lados). Supongamos que $|A_1A_4|=1$, y sea $|A_1A_2|=a$, $|A_1A_3|=b$ y $|A_1A_5|=c$. Probar que (a,b,-c) es local.

LIX OLIMPIADA MATEMÁTICA ESPAÑOLA



Fase local, curso 2022 - 2023

Tarde del viernes 20 de enero de 2023 Segunda sesión

Problema 4. Consideremos un paralelogramo ABCD. Una circunferencia Γ que pasa por el punto A corta a los lados AB y AD por segunda vez en los puntos E y F, respectivamente, y a la diagonal AC en el punto G. La prolongación de la recta FG corta al lado BC en H, y la prolongación de EG corta al lado CD en I. Demostrar que la recta HI es paralela a EF.

Problema 5. Los inversos de los números enteros positivos de 2 a 2023 se escriben en una pizarra. En cada paso, se seleccionan dos números x e y y se reemplazan con el número

$$\frac{xy}{xy + (1-x)(1-y)}.$$

Este proceso se repite 2021 veces, hasta que solo quede un número. ¿Cuáles pueden ser los posibles números que se obtengan al repetir este proceso?

Problema 6. Encontrar todos los enteros positivos $a, b, c \ge 1$ que satisfacen

$$2^a + 7^b = c^2 + 4.$$