Retos matemáticos en la UJA – 2025

Solución al segundo problema

Problema 2 (propuesto por José M. Manzano). Consideramos dos números N y M de 2025 dígitos, todos ellos no nulos, de forma que los dígitos de M son los mismos que los de N pero en orden opuesto. ¿Es posible que M+N tenga todos sus dígitos impares?

Solución oficial. Expresamos $N = \sum_{k=0}^{2024} d_k 10^k$, donde $1 \le d_k \le 9$ representa el k-ésimo dígito de N, luego se cumple que $M = \sum_{k=0}^{2024} d_{2024-k} 10^k$ ya que sus dígitos están en orden inverso. También denotaremos por ℓ_k la llevada al sumar el dígito de orden 10^k en M+N, que viene dada por

$$\ell_k = \begin{cases} 1 & \text{si } d_{k-1} + d_{2024-k+1} + \ell_{k-1} > 9, \\ 0 & \text{en caso contrario,} \end{cases}$$

donde entenderemos que $\ell_0=0$ (es decir, al sumar las unidades no hay que sumar llevadas). De esta forma, el dígito de orden 10^k de M+N será el dígito de las unidades de $a_k=\ell_k+d_k+d_{2024-k}$. Vamos a razonar que debe haber un dígito par en M+N por reducción al absurdo, suponiendo que todos los a_k son impares y llegando a una contradicción.

Como $a_{1012} = 2d_{2012} + \ell_{2012}$ es impar, entonces $\ell_{2012} = 1$. Esto nos dice que $a_{1011} = d_{1011} + d_{1013} + \ell_{1011} > 9$ y, como estamos suponiendo que es impar, deducimos que $d_{1011} + d_{1013} + \ell_{1011} \ge 11$. Por lo tanto, $d_{1013} + d_{1011} \ge 10$, lo que nos da una llevada $\ell_{1014} = 1$. Para que $a_{1014} = d_{1014} + d_{1010} + \ell_{1014}$ sea par, $d_{1014} + d_{1010}$ debe ser par, luego $\ell_{1010} = 1$. Esto nos dice que $d_{1009} + d_{1015} + \ell_{1010} \ge 11$, lo que nos da $\ell_{1016} = 1$ y $\ell_{1008} = 1$ repitiendo el mismo razonamiento. De hecho, se puede razonar análogamente para ver que $\ell_{1006} = \ell_{1004} = \ell_{1002} = \ldots = 1$ y terminar probando que $\ell_0 = 1$, contradiciendo nuestra definición $\ell_0 = 0$.