Nivel 1. Sea $P$ un punto del lado $BC$ de un triángulo $ABC$. La paralela por $P$ a $AB$ corta al lado $AC$ en el punto $Q$ y la paralela por $P$ a $AC$ corta al lado $AB$ en el punto $R$. Si la razón entre las áreas de los triángulos $RBP$ y $QPC$ es $k^2$, hallar la razón entre las áreas de los triángulos $ARQ$ y $ABC$.
Nivel 2. En una pizarra hay escritos cuatro números reales $(a,b,c,d)$. Debajo de ellos, escribimos los números $(a-b,b-c,c-d,d-a)$ y borramos los originales. Observamos que, sin importar el número de veces que se repita este proceso, nunca obtenemos un número cuyo valor absoluto es mayor que $2023$. ¿Cuáles son los posibles valores de los números iniciales $a,b,c,d$?