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[1] For the period 1826–2000, we analyze the spectral characteristics of the winter North
Atlantic Oscillation (NAO) index and its predictability based on Singular Spectral
Analysis (SSA) and Autoregressive Moving Average (ARMA) models. In the first part,
SSA is applied to the winter NAO index to isolate its main spectral characteristics.
Based on the SSA, a reconstruction (filtering) of the winter NAO index series was carried
out. Results of the SSA indicate that the winter NAO index can be broken down into
some modulated amplitude oscillations with periods around 7.7 and 4.8 years, some
oscillations associated with a broadband peak of period around 2.4 years along with
nonlinear trends. The sum of these components, the SSA-filtered series, explains 56% of
the variance of the raw winter NAO index. The SSA-filtered series is particularly reliable,
reproducing the NAO phase during extreme events (winter NAO index � 1 or � �1);
for this subset of events, the phase of the actual and SSA-filtered series shows to be the
same in 91% of the cases. The high positive values observed in the winter NAO index in
the last eighties and nineties appear to be associated with the simultaneous presence of a
positive trend, starting in the early eighties and of unprecedented steepness, and an
oscillation with period around 7.7 years, having very high amplitude. In the second part,
an ARMA model has been fitted to the filtered winter NAO index and a forecasting
experiment was conducted; results are tested against the raw winter NAO index. Results
show that the ARMA modeling has useful 1-year-ahead forecasting abilities. Particularly,
over the period 1986–2000, not used to fit the model, the model skill is 27.8% better than
climatology and 43.3% better than persistence (38.5% and 47.6%, respectively, when
taking into account only extreme NAO events). Additionally, percentage of cases in which
the NAO phase was accurately predicted proved to be 80% (88% for extreme NAO
events). For 2001/2002 and 2002/2003 winters, persistence in the negative phase of the
NAO is predicted, having an index value close to �1.
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1. Introduction

[2] Among the several modes of low-frequency variabil-
ity in geopotential heights in the Northern Hemisphere, one
of the most important is known as the North Atlantic
Oscillation (NAO) [Wallace and Gutzler, 1981; Barnston
and Livezey, 1987]. The NAO mode of variability is
particularly important during winter and is characterized
by a dipolar pattern of NS sea level pressure (SLP), with
one of the centers located over Iceland and the other
approximately over the Azores Islands. This dipolar pattern
reflects the strong contrast in meridional pressure over the
North Atlantic region. The NAO presents remarkable inter-
annual variability that can be summarized as the existence

of two phases. The positive phase of the NAO reflects
below-normal heights and pressure across the high latitudes
of the North Atlantic, with above-normal heights and
pressure over the central North Atlantic. The negative phase
is characterized by opposed anomalies to those that are
observed during the positive phase. Both phases of the
NAO are associated with basin-wide changes in the inten-
sity and location of the North Atlantic jet stream, storm
track and changes in the patterns of zonal and meridional
heat and moisture transport from the Atlantic Ocean to the
continental areas of Europe. Particularly, a northward shift
of the axis of maximum moisture transport occurs when the
NAO is in the positive phase, causing an intensified west-
erly flow that brings warm maritime air to Europe during
winter, reducing the polar outbreaks over Europe and
leading to a warming of central and southern Europe and
a cooling of the northwestern Atlantic area [Hurrell, 1995].
These effects make the NAO the most important cause of
climate variability in the North Atlantic area on interannual
timescales [Hurrell, 1995; Hurrell and van Loon, 1997;
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Osborn et al., 1999; Rodrigo et al., 2001; Pozo-Vázquez et
al., 2001a].
[3] A proxy way to monitor the NAO and to study its

temporal variability back in time is by means of an index
constructed using the pressure differences between a station
located near the southern center of the dipole and the other
one near the northern center. In recent years, several NAO
proxy indices have been proposed using different stations
and different time-averaged intervals of the year [Hurrell
and van Loon, 1997; Jones et al., 1997].
[4] The observed temporal variability of the NAO during

the recent decades shows some persistent episodes, which
have yielded important climate-related socioeconomic
impact over the NAO influence area [Fromentin and Plan-
que, 1996]. For instance, from the 1979/1980 winter to the
1994/1995 winter, the positive phase of the oscillation
dominated the circulation. This persistence of the positive
phase produced anomalous climatic conditions over Europe.
During this period southern Europe and Africa were abnor-
mally dry, resulting in a severe drought, while northern
Europe and Scandinavia were abnormally wet and warm
[Halpert and Bell, 1997]. The situation reversed in the
1995/1996 winter, in which the NAO changed to the
negative phase.
[5] Despite the intense research during the last decades,

the physical mechanism underlying the temporal variability
of the NAO still remains unclear. The spectral analysis of
the NAO indices, both using classical and wavelet analysis,
provides a near-white noise like behavior, but also some
significant power associated with periods in the 2-year
band, between 5 and 6 years and at quasi-decadal scales
[Rogers, 1984; Pozo-Vázquez et al., 2000, 2001a; Stephen-
son et al., 2000]. These low-frequency variability modes
have been associated with processes involving the North
Atlantic Ocean basin [Delworth, 1996; Taylor and Stephens,
1998; Rajagopalan et al., 1998; Timmermann et al., 1998;
Rodwell et al., 1999], and also with internally generated
atmospheric processes [Perlwitz and Graf, 1995]. Based on
the association between the sea surface temperature (SST)
in the North Atlantic basin and the NAO, some attempts
have been made to predict the NAO state on seasonal to
interannual basis [Taylor and Stephens, 1998; Rodwell et
al., 1999]. However, the importance of the relationship
between the NAO and the Atlantic Ocean SST is still
largely unknown and, unlike the El Niño–Southern Oscil-
lation (ENSO), forecasting of the NAO state on seasonal to
interannual scale upon the North Atlantic SST state is still
far from reliable. Recent works suggest that the ENSO
influences the NAO state [Dong et al., 2000; Pozo-Vázquez
et al., 2001b] to a degree that could lead to an ENSO-related
NAO variability.
[6] The aim of the present study is to increase current

knowledge of the temporal modes of variability of the NAO
and to evaluate its potential predictability based on its own
history. The study is divided in two parts. In the first part,
we use Singular Spectral Analysis (SSA) to determine and
isolate the significant temporal modes of variability of the
winter NAO index. SSA acts as a data-adaptive filter,
removing the background noise and retaining the leading
statistically significant signals [Ghil and Vautard, 1991;
Vautard et al., 1992]. The filtered signal is composed by
modulated oscillatory signals and trends. Particularly, we

are interested in the presence and onset time of trends in the
winter NAO index series. In the second part, an interannual
linear prediction of the SSA-filtered winter NAO index
series is carried out. To this end, Autoregressive Moving
Average (ARMA) models [Box and Jenkins, 1976] are fitted
to the series. ARMA models can be regarded as a special
case of general linear stochastic processes and provide a
linear representative structure of the temporal evolution of
the data. We assume that the SSA-filtered winter NAO
index contains, basically, the linearly predictable signal
contained in the raw winter NAO index. Our purpose is
not to supply an operational methodology to forecast the
NAO state, but to study the extend to which the NAO state
can be linearly predicted based in is own history. Partic-
ularly, since this methodology only uses for the prediction
of the NAO the own history of the series, our results may be
useful to evaluate the importance of external variables in
predicting the NAO state.
[7] The work is organized as follows: section 2 describes

the data used, section 3 shows the results of the analysis and
a discussion and some conclusions are provided in section
4. In the appendices, a description of the methodologies
used in this work is given. Particularly, SSA (Appendix A)
and ARMA modeling (Appendix B.1) are fully discussed,
as well as the methodology used to cross-validate the
ARMA model (Appendix B.2), the setup procedure of the
forecasting experiments (Appendix B.3) and the accuracy
and skill scores employed (Appendix C).

2. Data

[8] The pressure data used correspond to Gibraltar
(36.1�N, 5.4�W) and SW Iceland, the latter comprisedmainly
of data fromReykjavik and Stykkisholmur (65.0�N, 22.8�W)
[Jones et al., 1997]. The records, taken on a monthly basis,
extend from 1826 to 2000. The final purpose is to establish
a winter NAO index comparing the pressure data of two
stations. Due to the different statistical characteristics of the
data from the northern and southern stations, and due to the
change of both mean and standard deviations over the year,
a normalization process for each pressure time series is
necessary in order to avoid creating a biased and misleading
index. Thus, a monthly normalized series is constructed for
each station, which consists of calculating the difference
between each raw monthly value and a time-averaged
monthly mean value, and then dividing by a time-averaged
monthly standard deviation. Normalization relative to the
period 1961–1990 has been used. Notably, this process
removes the annual deterministic cycle. We construct a
monthly NAO index by subtracting both series, and a
seasonal index for winter is constructed using averages of
three consecutive monthly index values (December–Febru-
ary). Although other normalization procedures have been
proposed [Ropelewski and Jones, 1987], this has been
argued to be the optimal method [Trenberth, 1984]. Due
to the selected normalization period, the index does not
have mean zero or standard deviation unity; the variance of
the series is 1.23. Although the existence of several for-
mulation for the winter NAO index, the index constructed
using Gibraltar data for the southern center has been found
to be the most representative of the NAO variability during
winter [Pozo-Vázquez et al., 2000]. An annual index of the
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NAO, using the Gibraltar as the southern stations, has been
also analyzed. The annual index was computed by averag-
ing the seasonal indices (March–May for spring, June–
August for summer, and September–November for the
autumn index).
[9] To test the sensitivity of the results against the way in

which the index is formulated, we have also analyzed other
formulations of the winter NAO index, which used SLP
data from Azores and Lisbon as representatives of the
southern NAO center of action. These indices were com-
puted using the same procedure used for the Gibraltar case,
and cover the period 1865–2000. The Principal Component
(PC) series of the Northern Hemisphere SLP during winter,
as defined by Barnston and Livezey [1987], is also used.
This series covers the period 1950–2000.
[10] Since the main application in predicting the NAO

involves predicting its impact on the climate, and given that
this impact is strongly dependent on the NAO strength and
phase, we have investigated the performance of the pro-
posed SSA and ARMA models in reproducing and predict-
ing the extreme phases of the NAO, defining those as the
cases in which the raw winter NAO index is �1 or ��1.
Results using this subset of data are also of interest given
that the differences between the different winter NAO index
formulations diminishes when considering only the extreme
events. Thus, the results presented for these particular cases
can be regarded somehow index independent.

3. Analysis

3.1. SSA of the Winter NAO Index

[11] In this section we carry out a SSA on the raw winter
NAO index. Procedures followed in this analysis are fully
discussed in Appendix A.
3.1.1. Oscillatory Modes
[12] SSA has been carried out on the lagged-covariance

matrix based on the Broomhead–King algorithm, using a
M = 40 window length. In the results of this analysis, we
have considered 15 eigenvalues, which explain 60% of the
total data variance. Eigenvalues 1 and 2, 3 and 5, 6 and 7,
8 and 9, and 11 and 12 conform 5 pairs, each one in
quadrature, representing oscillatory modes. On the other
hand, eigenvalues 4 and 10 reflect the general trends of the
data, and particularly the Empirical Orthogonal Function
(EOF) corresponding to the eigenvalue 4 (EOF 4), is
associated with an oscillation of frequency 0.008 cycles/
yr (period 125 years). Finally, eigenvalues number 13, 14,
and 15 do not show oscillatory behavior.
[13] The Maximum Entropy Method (MEM) has been

used to evaluate the spectral contents of the PC time series
corresponding to the EOFs. Results reveal that EOFs pairs
1–2 and 6–7 contain oscillations associated with periods
around 7.8 and 4.8 years, respectively. EOFs 3–5, 8–9, and
11–12 have associated oscillations of periods 2.4, 2.3, and
2.9 years, respectively.
[14] The use of a window length of M = 40 years in the

SSA yields to an approximate spectral resolution of 1/40
years = 0.025 cycles/yr. Given that the difference between
periods of 2.4 and 2.3 years is only 0.018 cycles/yr, it is
more likely that the individual oscillations of periods
between 2.4 and 2.9 years found in the SSA analysis
represent a broadband peak, rather than distinct periodici-

ties. Regardless of the choice of the window length (M), the
oscillations of period 2.3 and 2.4 years are very close to
resolvable frequency using yearly sampled data (Nyquist
frequency) [Robertson et al., 2000]. We have used monthly
and annual data to confirm the robustness of oscillation
modes found in the winter-annual SSA. Results both using
monthly and annual data show the presence of a single
oscillation with period around 2.6 years. This confirms the
hypothesis that the oscillations of periodicities between 2.3
and 2.9 years found for the winter NAO index represent in a
fact a broadband peak.
3.1.2. Testing the Significance
[15] Results of the previous sections suggest the existence

of oscillatory components in the winter NAO index. The
extent to which this hypothesis can be considered true is
assessed in this section through the use of a Monte Carlo
technique. First, results of the previous section will be tested
against the hypothesis of the winter NAO index to be the
result of a pure AR(1) process with a lag-one autocorrela-
tion value corresponding to that of the winter NAO index
(0.05). To this end, we use the data-adaptive basis, projec-
ting each surrogate Monte Carlo realization onto the EOFs
of the data and comparing the result with those of the
original data. Figure 1a shows the results of this hypothesis
test. The extremes of the vertical bars indicate the 2.5th and
97.5th percentiles of the diagonal elements of �surrogate

corresponding to the EOFs whose eigenvalues they overlie.
The vertical bars show the variance expected from the
AR(1) process. Results show that EOFs 1, 2, 3, and 5
contain more power than expected from the null hypothesis,
indicating that these EOFs are individually significant at the
97.5% level. On the other hand, the rest of the EOFs,
explain just the variance expected from the AR(1) process,
lying within the surrogate data bars.
[16] An alternative way of displaying the information of

Figure 1a is to plot the eigenvalues and surrogate data bars
against the dominant frequency associated with their corre-
sponding EOFs, as shown in Figure 1b. Since the EOFs
obtained from SSA are not generally pure sinusoidal,
identifying a single frequency with an EOF is difficult.
For display purposes, a frequency can be associated with an
EOF simply by maximizing the squared correlation with a
sinusoidal signal. Figure 1b shows EOFs 1 and 2 to be
significant, forming a pair centered on 0.13 cycles/yr
(period of 7.7 years). EOFs 3 and 5, centered on 0.42
cycles/yr (period 2.4 years), also prove to be significant at
the 97.5% confidence level.
[17] Merely observing a pair of data eigenvalues lying

above the 97.5th percentiles of the corresponding surrogate
distributions is generally not enough to conclude that we
have detected an oscillation at that frequency at the 97.5%
significance level. Even if we are analyzing a segment of
pure noise, the average number of excursions above the
97.5% percentile will be 0.025M by construction. The
correct interpretation of Figure 1a, therefore depends on
our prior knowledge and expectations. If we know before-
hand that it is EOF-k that we are interested in, then the
position of the kth eigenvalue of Sdata relative to the
corresponding surrogate data distribution translate straight-
forwardly into the significance level of the test. Often,
however, we use the results of such spectra to decide which
EOFs to focus on [Allen et al., 1996].
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[18] The Monte Carlo procedure can also estimate the
probability of n excursions above the mth percentile of the
test presented in Figure 1a. If we look for any excursions
above the 97.5th percentiles of the surrogate distributions
with a window width of 40, then we are, in fact, performing
40 ‘‘minitests.’’ The probability of at least one excursion
above the 97.5th percentiles of the surrogate distributions is
clearly greater than 2.5%. Since the 40 ‘‘minitests’’ are not
mutually independent, the probability of a given number of
excursions does not, in general, conform to an analytically
calculable distribution. For the AR(1) null hypothesis, this
is well approximated by the binomial distribution that we
would expect if the excursions are independent, so it can be
parameterized [Allen et al., 1996]. For the AR(1) process,
the probability of having at least four excursions above the
97.5th percentiles, as observed in Figure 1a, for a given
member of the surrogate ensemble is 8%. Therefore, the
true confidence level at which the AR(1) null hypothesis
can be rejected is around 92%. However, taking into
account the existence of oscillations having periods 7.7

and 2.4 years, obtained from the spectral analysis, and given
our a priori interest in EOFs 1, 2, 3, and 5, we reject the null
hypothesis of the winter NAO index to be a red noise AR(1)
process.
[19] The test procedure must continue until a final null

hypothesis is not rejected. The following step is to test the
composite null hypothesis consisting of a red noise whose
parameters are chosen in order to exclude the signal EOFs
identified (1–2 and 3–5 EOFs pairs). For this hypothesis
the lag one autocorrelation value is 0.024. This value
corresponds to the residual time series resulting from the
reconstruction of the winter NAO index just using 1–2 and
3–5 EOFs pairs. Figures 2a and 2b show the results of this
new hypothesis test. As expected, again, EOFs 1, 2, 3, and
5, previously identified signal, are trivially significant at
97.5% confidence level. Additionally, EOFs 4, 6, and 7, this
latter being just at the limit, were significant at this
significance level. The EOF 4 has an associated oscillation
of a period of 100 years, thus representing the present trend
in the data series. EOFs 6 and 7 form a pair with a similar
associated frequency of 0.21 cycles/yr (period 4.8 years). As
in the previous case, the true confidence level to which this
hypothesis can be rejected, taking into account the proba-
bility of having at least three excursions above the 97.5th
percentiles, is the 79% level. On the base of these results
and the a priori information, the composite null hypothesis
can be rejected.

Figure 1. (a) Eigenvalues resulting from the SSA of the
winter NAO index ranked by associated power. Vertical
bars show the variance we should expect in the directions
defined by these EOFs in a segment of AR(1) noise
(percentiles 97.5th and 2.5th). (b) Eigenvalues resulting
from the SSA of the winter NAO index against the
dominant frequency associated with their corresponding
EOFs. Vertical bars show the variance we should expect in
the directions defined by these EOFs in a segment of AR(1)
noise (percentiles 97.5th and 2.5th).

Figure 2. Test series against the null hypothesis of winter
NAO index consists of two oscillations of 7.7 and 2.4 years
plus AR(1) noise. (a) As in Figure 1a. (b) As in Figure 1b.
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[20] The null hypothesis currently consists of a red
noise, being the EOF 4 (representing the trend), EOFs
1–2 (oscillation of period 7.7 years), EOFs 3–5 (oscil-
lation of period 2.4 years), and EOFs 6–7 (oscillation of
period 4.8 years), chosen as signal. Under this conditions,
the AR(1) process has a lag-one autocorrelation value of
�0.039. This value corresponds to the residual time series
derived from the reconstruction of the winter NAO index
using 1–2, 3–5, and 6–7 EOFs pairs and the EOF 4.
Figures 3a and 3b show the results of this new hypothesis
test. Results show that, in addition to the EOFs 1–2, 3–5,
and 6–7, also EOFs 9 and 10 are now significant at the
97.5% level. EOF 10 has an associated frequency of 0.016
cycles/yr (period 63 years). EOF 9 and EOF 8 form a pair
with an associated period of 2.3 years, being EOF 8
almost significant (significance level is 97%). The true
confidence level at which this hypothesis can be rejected is
79%. Based on these results, the second composite null
hypothesis is rejected.
[21] Finally, the null hypothesis for the winter NAO index

to be composed of low-frequency variability (periods
greater than 63 years, EOFs 4 and 10), an oscillation of
period 7.7 years (EOFs 1–2), some oscillations associated
with a broadband peak or period around 2.4 years (con-
tained in EOFs 3–5 and 8–9), an oscillation of period 4.8

years (EOFs 6–7) and a AR(1) process with a lag-one
autocorrelation value of �0.0039 will be tested. Figure 4
shows the results. An additional EOF (EOF 12) proves to be
significant, but the true confidence level is very low, only
68%. On the basis of the former results, this null hypothesis
cannot be rejected.
[22] We thus conclude that the winter NAO index can be

represented by the following model, a nonlinear trend that
contains variability at periods of 63 (EOF 10) and 100 years
(EOF 4), an oscillation with associated period of 7.7 (EOFs
1–2), some oscillations associated with a broadband peak of
period around 2.4 years (contained in EOFs 3–5 and 8–9),
an oscillation of period 4.8 years (EOFs 6–7), and a red
noise process with lag-one autocorrelation �0.0039 and
variance 0.84. This model was checked using the Noise
Null Hypothesis test [Allen et al., 1996], obtaining similar
results.
[23] We have explored the sensitivity of the results to

the way in which the winter NAO index is defined. For
this purpose, we have carried out a SSA on the winter
NAO indices defined using the Azores and Lisbon as the
southern stations, and also on PC SLP series defined by
Barnston and Livezey [1987], although its limited tempo-
ral extension. Overall, results show that the most impor-
tant modes of variability found in the Gibraltar
formulation of the winter NAO index are also found
when the other formulations are analyzed. Particularly,
the long-term trend, the oscillations of period around 7.7
and the broadband peak of period around 2.4 years are
present in the four analyzed NAO indices. Main differ-
ences are the oscillation of period around 4.8 years, found
in the Gibraltar formulation but not in the rest, and one
oscillation of period between 3.3 and 3.8 just found for
the Azores formulation.
[24] To test the results against the danger of aliasing

subannual frequencies into annual modes, we have carried
out an additional SSA using an annual Gibraltar NAO
index. Oscillations found for the winter index are also
found in the annual index, while some oscillations are
found in the annual index but not in the winter case (5,
5.9, 13, and 4 years). Thus, the modes of variability found

Figure 3. Test series against the null hypothesis of winter
NAO index consists of low-frequency variability (period >
100 years), three oscillations of 7.7, 2.4, and 4.8 years plus
AR(1) noise. (a) As in Figure 1a. (b) As in Figure 1b.

Figure 4. Test series against the null hypothesis of winter
NAO index consists of low-frequency variability (period >
63 years), four oscillations of 7.7, 2.4, 4.8, and 2.3 years
plus AR(1) noise. (a) As in Figure 1a.
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for Gibraltar formulation of the winter NAO index can be
considered interannual modes of variability.
3.1.3. Reconstruction of the Winter NAO Index
[25] In the previous section, we concluded that the winter

NAO index can be represented by a nonlinear trend that
contains variability at periods of 63 and 100 years and a set
of oscillations with associated periods around 7.7, between
2.3–2.4 and 4.8 years, plus a red noise process. Based on
these results, we have carried out a reconstruction of the
winter NAO index (see Appendix A), called SSA-filtered
series. The raw index has a variance value of 1.23, while the
SSA-filtered NAO has a variance of 0.51. Over the period
1826–2000, the correlation between the original and the
SSA-filtered series is 0.75 (statistically significant at 95%).
Thus, the variance explained by the model is 56%. Addi-
tionally, Maximum Square Error (MSE) of the model is 0.72,
Maximum Absolute Error (MAE) is 0.69 and the percentage
of cases in which the phase of the SSA-filtered series is the
same as that of the raw winter NAO index is 74% (see first
column in Table 1). Figure 5a shows the raw and SSA-
filtered indices along with the trend component. The model
is particularly reliable capturing the winter NAO index
behavior in the period 1826–1900, during which extreme
values are in many cases correctly modeled, and from 1970
onwards, during which the tendency in the winter NAO
index is clearly reflected. During the period 1826–1890 no
trend is discerned. From 1890 to 1920 a slightly positive
trend can be observed while from 1920 to 1970 a negative
trend appears in the data. From 1980 onwards a strong
positive trend is evident. Note the unprecedented steepness
of this trend. Figures 5b and 5c show, respectively, the
oscillations associated with periods 2.4 and 2.3 years. There
is a clear modulation of the amplitude of these components,
with higher amplitude in the periods 1826–1850 and 1890–
1930, and the lowest amplitude at the end of the record. The
same amplitude-modulated behavior is found associated
with periods 7.7 and 4.8 years (Figure 5d). The high
amplitude associated with period 7.7 years at the final of
the record is notable. Many of the high positive values
observed in the winter NAO index in the eighties and
nineties (particularly during 1983–1984, 1989–1992, and
1998–2000) appears to be associated with the simultaneous
presence of a positive trend, starting in the early eighties and
of unprecedented steepness, and an oscillation with period
around 7.7 years with very high amplitude.
[26] For the extreme phases of the NAO, the MSE is 1.20,

MAE is 0.95, the correlation between the original and the

SSA-filtered series is 0.83 (statistically significant at 95%),
and the percentage of cases in which the phase of SSA-
filtered winter NAO index is the same as that of the raw
index is 91% (see first column in Table 4).

3.2. Stochastic Modeling and Forecasting of the
Winter NAO Index

[27] In this section we carry out an ARMA modeling of
the SSA-filtered winter NAO index. The ARMA model
fitted to the SSA-filtered winter NAO index is then used in a
forecasting experiment.
[28] Data from 1826 to 1985 were used to fit the model

while data from 1986 to 2000 were used for a true
comparison in the forecasting experiment. See the appen-
dices for a throughout explanation of the ARMA modeling
procedure (Appendix B.1), the methodology used for cross-
validation the ARMA model (Appendix B.2), the setup
procedure of the forecasting experiments (Appendix B.3)
and the accuracy and skill scores employed (Appendix C).
3.2.1. ARMA Modeling
[29] Figures 6a and 6b show, respectively, the sample

Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF) of the raw winter NAO index series, while
Figures 6c and 6d show the sample ACF and PACF of the
SSA-filtered winter NAO index. The analysis of these
figures is the starting point of the ARMA modeling process.
[30] As a preliminary step, we studied the stationarity in

mean and variance of the raw and the SSA-filtered NAO
indices. The study was carried out by analyzing the ACF
and following Pankratz [1991, chapter 2]. As a result of this
study, the stationarity in the mean and variance for the two
analyzed series can be assumed. A study of the histogram,
skewness and kurtosis coefficients suggests that also the
normality can reasonably be assumed for both series.
[31] Note in Figure 6 that, while the raw data behaves like a

white noise process, the SSA-filtered series shows a strong
autocorrelation pattern. This makes the SSA-filtered winter
NAO index more predictable compared to unfiltered one,
given the weak autocorrelation pattern of this latter. It appears
that the autocorrelation pattern of the winter NAO index was
hidden, in some sense, by other random phenomena that were
present in the original pressure data, and that the filtering was
successful in removing these other phenomena.
[32] Following the ARMA modeling process outlined in

Appendix B.1, we have found for the raw winter index an
ARMA(9,9) model. The estimated innovations variance is
ŝ2e ¼ 0:97, around 21% of reduction in the variance from

Table 1. Statistical Results for the NAO SSA Modeling and the ARMA Forecasting Experiment

Raw winter NAO
versus SSA-filtered

winter NAO
(period 1826–2000)

Raw winter NAO
versus one-step-ahead

forecast
(period 1826–1985)

Raw winter NAO
versus one-step-ahead

forecast
(period 1986–2000)

Raw winter
NAO versus several-
steps-ahead forecast
(period 1986–2000)

MSE 0.72 0.75 1.49 1.8
MAE 0.69 0.71 0.97 1.1
Correlation coeff. 0.75a 0.70a 0.48 0.40
MSEcli 1.15 1.98 1.98
MSEper 2.23 2.64 2.64
% SMSEcli 34.8 24.7 9
% SMSEper 66.3 43.5 31.8
% Phase accordance 74 69 80 60

aCorrelation coefficients that are statistically significant at the 95%.
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that of an uncorrelated process (variance of raw winter
NAO index is 1.23).
[33] For the SSA-filtered index, we have finally chosen

an ARMA(8,9) model with parameters:

AR ¼ ðf1 ¼ 0:37*; f2 ¼ 0:43*; f3 ¼ �0:97*; f4 ¼ 0*;
f5 ¼ 0:95*; f6 ¼ �0:66*; f7 ¼ 0; f8 ¼ 0:66*Þ;

MAðq1 ¼ 0:26*; q2 ¼ �0:22; q3 ¼ 0; q4 ¼ 0; q5 ¼ �0:68*;
q6 ¼ 0; q7 ¼ �0:19; q8 ¼ 0; q9 ¼ �0:56*Þ:

[34] The estimated innovations variance is ŝ2e ¼ 0:03,
around 94% reduction in the variance from that of an
uncorrelated process (SSA-filtered NAO variance is 0.51).
Since the SSA-filtered winter NAO index accounts for the
56% of the raw winter NAO index variance, the ARMA
model explains a similar amount of this raw winter NAO
index. Significance of the parameters was computed using
approximate t-values, derived from the parameter standard
errors (those with ‘‘*’’ are significant at 95% level). If not
significant, a parameter can in most cases be dropped from
the model without substantially affecting the overall fit, but
improving its parsimony (monitored through the Akaike
Information Criterion (AIC)). Thus, some parameters have
been set to zero. Some parameters were not significant, but
a comprehensive study showed their importance (for
instance, the AIC was not improved when setting these
parameters to zero). The high-order model finally selected,
through the use of an independent information criterion,
indicates a certain degree of persistence. Given the values of
some of the parameters of the model and the ACF and
PACF shown in Figures 6c and 6d, the current winter NAO
state is considerably dependent on its state up to 5, 6, and
even 8 years earlier. Also notable is the importance of the
MA part of the model, that is, the departure of the expected
past values (up to 9 years before) substantially influences
the current value.
3.2.2. Forecasting Experiment
[35] We have conducted a forecasting experiments for the

SSA-filtered winter NAO index based on its ARMA(8,9)
model. Results are tested against the raw winter NAO index.
Procedures followed in this forecasting experiment are fully
discussed in the appendices.
[36] Figure 7 presents the result of this forecasting experi-

ment and Table 1 shows a summary of the performance of
the model. Particularly, Figure 7a shows the one-step-ahead
forecast, that is, the prediction made for 1 year into the
future, during the period 1965–1985, while Figure 7b
shows the forecasting for the period 1986–2000. The period
1826–1985 was used to construct the model (calibration
period) and therefore, only the predictions from 1986 to
2000 (Figure 7b) can be regarded as genuine. For the sake
of comparison, the raw winter NAO index is also shown.
Over the calibration period, Figure 7a, the quasi-decadal
oscillation, as the main characteristic of the series, is clearly

Figure 5. (opposite) (a) Raw (thin continuous line) and
SSA-filtered (dashed line) series of the winter NAO index.
The trend components are also shown (thick continuous
line). (b) Oscillation of period 2.4 years. (c) Oscillation of
period 2.3 years. (d) Oscillations of period 7.7 years
(continuous line) and 4.8 years (dashed line).
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Figure 6. (opposite) Estimated ACF (a) and PACF (b)
along with 95% confidence intervals of raw winter NAO
index. Standard errors assume AR order of k - 1 for PACF
and white-noise estimates for ACF. (c and d) As in (a) and
(b), but for the SSA-filtered winter NAO index.

Figure 7. (a) Results of the forecasting experiment of
winter NAO index. The one-step-ahead forecast for the
SSA-filtered winter NAO index is shown for the period
1965–1985. Raw (unfiltered) NAO data, filtered NAO data,
and one-step-ahead forecasts along with the 95% con-
fidence intervals are displayed. (b) As in (a), but during the
period 1986–2000 (used for true comparison). (c) Results
from the several-steps-ahead forecasting experiment. Using
data until 1985, NAO is forecasted starting in 1986 and
continuing until 2010.
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visible. The actual filtered winter NAO index values are
always within the 95% confidence intervals, indicating that
the ARMA model properly represents the main character-
istics of the SSA-filtered winter NAO index. The raw winter
NAO index shows a considerable variability, greater than
those of the filtered index, causing that the raw values to fall
outside of the confidence bands in many cases. Never-
theless, the overall behavior of the raw winter NAO index
closely recalls that of the filtered one, and the model
forecasts with generally little error the state of the NAO.
Particularly, MSE is 0.75, MAE is 0.71, correlation coef-
ficient is 0.70 while percentage of cases in which the phase
of the NAO was accurately predicted is 69%. This leads us
to conclude that the autocorrelation structure of the winter
NAO index in the SSA-filtered index, which was over-
whelmed by the presence of random signals in the raw data,
captures to certain degree the behavior of the raw winter
NAO index over time. Over the period 1986–2000 (Figure
7b), do not used to fit the model, MSE is 1.49, MAE is 0.97,
correlation coefficient is 0.48 while the percentage of cases
in which the NAO phase was accurately predicted proved to
be 80%. Reliability was particularly strong in the forecast
during the period 1998–2000.
[37] To assess the skill of the forecast ARMA model, we

first computed the MSE when climatology (MSEcl) and
persistence (MSEpe) are used for forecasting; then, we have
obtained the percentage improvement in MSE forecast over a
climatological forecast (SMSEcl) and the percentage
improvement in MSE forecast over a persistence forecast
SMSEpe. Additionally, we computed the Linear Error in
Probability Space skill score (LEPS), see Appendix B.3.
Results are shown in Table 1. Over the period 1826–1985,
the ARMA model skill is 34.8% better than climatology and
66.3% better than persistence. Over the period 1986–2000,
percentage improvement is lower but still high, SMSEcl is
24.7% and SMSEpe 43.5%. Note the considerable better
results in the prediction using climatology compared to
persistence. Furthermore, over the period 1826–1985, the
LEPS value is +36.8% while over the period 1986–2000 the
LEPS showed a value +23.4%. We can, then, conclude that
the ARMA model shows considerable skill, improving
notably the results of using climatology or persistence or
random forecast.
[38] An additional forecasting experiment was made in

order to check the forecasting skill of themodel in predictions
several steps ahead, for which Figure 7c shows the results.
Using information until 1985, the NAO state is forecasted
from 1986 to 2010. It is easy to note the quasi-decadal
structure of the forecast. Results of the forecast are especially
reliable during the periods 1986–1991 and 1998–2000.
MSE for the period 1986–2000 is 1.8, MAE is 1.1, correla-
tion coefficient is 0.40 and percentage of accurately predicted
phase is 60%. The skill scores show percentage improve-
ments, as expected, considerably lower than in the one-step-
ahead forecast, but still the ARMA model shows better
results than climatology (SMSEcl is 9%) and persistence
(MSEpe is 31.8%). Confidence in the prediction seems to
lose reliability when an anomalous persistence in one of the
phases (as those of the early nineties) takes place. A problem
to be considered is possible ‘‘external’’ factors not accounted
for in the history of the series and which could affect the
evolution of the phenomenon. For the winter of 2000/2001

the prediction of the model was �0.523 while the actual
value was �0.44. For the winters of 2001/2002 and 2002/
2003, persistence in the negative phase is predicted, having
winter NAO index value close to �1.
[39] As in the case of the SSA-filtered winter NAO index,

a forecasting experiment has been carried out for the raw
winter NAO index using its ARMA(9,9) model. Results are
considerably worse than those using the SSA-filtered index.
Particularly, during the period 1986–2000, the one-step-
ahead forecast has a MSE of 2.2, MAE is 1.6, correlation
between the actual and the forecasted series is 0.36 and the
percentage of accurate predicted phases is 62%.
3.2.3. Cross-Validation
[40] Cross-validation of the model was carried out by

dividing the development period 1826–1985 in two sub-
periods, 1826–1899 and 1900–1969, and then fitting
ARMA models to these two subseries (see Appendix
B.2). For the period 1826–2000, we found an ARMA(8,9)
model, having parameters:

AR ¼ ðf1 ¼ 0:27*; f2 ¼ 0:21*; f3 ¼ �0:95*; f4 ¼ 0;
f5 ¼ 0:75*; f6 ¼ �0:80*; f7 ¼ 0; f8 ¼ 0:40*Þ;

MAðq1 ¼ 0:30*; q2 ¼ �0:44*; q3 ¼ 0; q4 ¼ 0; q5 ¼ �0:70*;
q6 ¼ 0; q7 ¼ �0:37; q8 ¼ 0; q9 ¼ �0:14Þ:

For the period 1900–1969, the model was an ARMA(8,9)
having parameters:

AR ¼ ðf1 ¼ 0:27*; f2 ¼ 0:34*; f3 ¼ �0:83*; f4 ¼ 0;
f5 ¼ 0:82*; f6 ¼ �0:50*; f7 ¼ 0:1; f8 ¼ 0:68*Þ;

MAðq1 ¼ 0:14; q2 ¼ �0:27; q3 ¼ 0; q4 ¼ 0; q5 ¼ �0:45*;
q6 ¼ 0; q7 ¼ �0:35; q8 ¼ 0; q9 ¼ �0:47*Þ:

[41] Estimated reduction in the variance from that of an
uncorrelated process is 95% for the 1826–1899 period
model and 94% for the 1900–1969 model. Note the strong
similarities between these two models and the model found
for the whole period. Only slightly differences in some
coefficients can be appreciated, but the order of the model
remains the same.
[42] Using the former ARMA models, we have carried

out one-step-ahead forecast and several-steps-ahead forecast
over the period 1900–1915 for the 1826–1899 model and
over the period 1970–1985 for the 1900–1969 model.
Results are shown, respectively, in Tables 2 and 3. The
comparison of the results in Tables 1, 2, and 3 do not show
important differences between the performances of the
complete period ARMA model and those of the two
subperiods, nor in MSE and MAE neither in the correlation
and percent of phase accordance. The main difference is a
greater MSE in the one-step-ahead forecast over the period
1985–2000 (corresponding to the 1826–1985 model) than
the MSE in the periods 1900–1915 and 1970–1985 corre-
sponding two subperiod models. In the first case is 1.49
while in the last two are 0.95 and 0.94.
[43] Previous results show than the ARMA model can

reasonably be considered independent of the period of
fitting, provide this period be long enough.
3.2.4. Extreme NAO Values
[44] As stated before, the main application in predicting

the NAO state involves predicting its impact on the climate.
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Given that this impact is strongly dependent on the NAO
strength and phase, we have investigated the performance
of the ARMA model in forecasting the extreme phases of
the NAO. Furthermore, the results for these particular
cases can be regarded somehow index independent. Table
4 shows the results. When comparing results in Tables 1
and 4, MSE and MAE show to be greater for the extreme
cases, but results of the correlation coefficients and per-
centage of phase accordance are better. Particularly, the
model is highly reliable predicting the phase: 82% during
the period 1826–1985 and 88% during the period 1986–
2000. During this latter period, only the year 1993
presented an extreme phase of the NAO not predicted 1
year earlier. In the several-steps-ahead forecasting experi-
ment, a 66% of the phases were accurately predicted
during the period 1986–2000 and the skill scores of these
extreme cases also show an overall improvement com-
pared to the whole cases. For the one-step-ahead forecast
and over the period 1985–2000 the skill is 38.5% better
than climatology (24.7% in Table 1). A similar improve-
ment is found for the several-steps-ahead forecast, SMSEcl

is 17.8% for extreme NAO values and 9% when consid-
ering all the winter NAO index values.
[45] Overall, ARMA model for extreme NAO values

shows better performance than for the whole NAO values,
highly improving the results of using simple climatology
or persistence.

4. Discussion and Concluding Remarks

[46] The variability and predictability of the winter NAO
index have been studied through the period 1826–2000
using SSA and ARMA models.
[47] Results of the SSA show that the winter NAO

index can be represented by the following model: a
nonlinear trend which contains variability at periods of
63 and 100 years, amplitude-modulated oscillations with
associated periods around 7.7, 4.8, between 2.3 and 2.4
years and a red noise process with lag-one autocorrelation
�0.0039 and variance 0.84. Using the former model, a

reconstruction of the winter NAO index (called the SSA-
filtered NAO index) was carried out, accounting for the
56% of its variance. The percentage of cases in which the
actual phase of the winter NAO index was accurately
reproduced by the SSA-filtered index is 74% and corre-
lation between the these series is 0.75. For extreme events
(NAO index �1 or ��1) percentage reaches 91% and
correlation 0.87. Similar modes of NAO temporal varia-
bility to those found in the SSA have been also reported
in different studies of the spectral characteristics of the
NAO index. Rogers [1984] analyzed the Fourier spectrum
of the winter NAO index from 1900 to 1983, using
pressure data from Iceland and the Azores, finding pro-
nounced peaks at periods 5, 7, and 20 years. Hurrell and
van Loon [1997] reported the Fourier power spectrum of
winter NAO index from 1865 to 1997, identifying peaks
at periods 2–3 and 6–10 years and interdecadal bands.
They also found a trend of the NAO spectra to become
redder with time. Perhaps the most prominent feature of
the SSA result is the presence of an upward trend, of
unprecedented steepness, which begins around 1980. Dur-
ing the last years, the observed positive trend of the NAO
index since 1960 has been speculated to be associated
with an anthropogenic effect on climate [Trenberth, 1995;
Wallace et al., 1995; Hurrell, 1996]. This trend arises
from a running mean computing of the NAO index series.
Our methodology, using SSA, suggest that the trend
begins not around 1960 but between 1970 and 1980.
Many of the high positive values observed in the winter
NAO index in the eighties and nineties appears to be
associated with the simultaneous presence of this positive
trend and the amplitude-modulated oscillation with period
around 7.7 years, which in these periods shows very high
amplitude. Additionally, our results suggest the presence
of a short upward trend between 1890 and 1920 followed
by a downward trend between 1920 and roughly 1970,
whose slopes are considerably lower than that of the
positive trend of the eighties. This low-frequency varia-
bility in the NAO index (interdecadal and longer), has
been associated with processes involving the ocean [Taylor

Table 2. Statistical Results for the Validation ARMA Model Developed Over the Period 1826–1899

Raw winter NAO
versus one-step-ahead

forecast
(period 1826–1899)

Raw winter NAO
versus one-step-ahead

forecast
(period 1900–1915)

Raw winter NAO versus
several-steps-ahead

forecast
(period 1900–1915)

MSE 0.80 0.95 1.06
MAE 0.72 0.89 0.91
Correlation coeff. 0.74a 0.74a 0.65a

% Phase accordance 74.4 73 62
aCorrelation coefficients that are statistically significant at the 95%.

Table 3. As in Table 2, but for the Model Developed Over the Period 1900–1969

Raw winter NAO
versus one-step-ahead

forecast
(period 1900–1969)

Raw winter NAO
versus one-step-ahead

forecast
(period 1970–1985)

Raw winter NAO versus
several-steps-ahead

forecast
(period 1970–1985)

MSE 0.72 0.94 1.12
MAE 0.69 0.77 0.86
Correlation coeff. 0.68a 0.71a 0.69a

% Phase accordance 68.8 71.4 57.0
aCorrelation coefficients that are statistically significant at the 95%.
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and Stephens, 1998; Rajagopalan et al., 1998; Timmer-
mann et al., 1998; Rodwell et al., 1999].
[48] The ARMA modeling of the SSA-filtered winter

NAO index results in an ARMA(8,9) model. A similar
model was found by Stephenson et al. [2000], modeling the
stochastic behavior of the NAO index. The forecasting
experiment shows that the ARMA(8,9) model presents
useful forecasting skills. For one-step-ahead forecasts and
over the period 1986–2000, used for true comparison, the
model skill is 27.8% better than climatology (in Means
Square Error) and 43.3% better than persistence, while
percentage of cases in which the actual NAO phase is
accurately predicted is 80%. When taking into account only
extreme NAO events, the model skills are 38.5% and 47.6%
better than climatology and persistence respectively, while
percentage of cases in which the actual NAO phase is
accurately predicted is 88%. For several-steps-ahead fore-
cast, and over the same 1826–2000 period, skill scores are
lower but still better than climatology (9%) and persistence
(31.8%), while percentage of cases in which the actual NAO
phase is accurately predicted is 60%. For 2000/2001 winter,
the prediction was �0.523 while the actual value was
�0.44. For 2001/2002 and 2002/2003 winters, persistence
in the negative phases is predicted, having NAO index value
close to �1. For the 2001/2002 winter, a negative value is
also forecasted by Rodwell and Folland [in press] using
SST data.
[49] The results of the analysis of an univariate time series

representative of a complex and nonlinear dynamical sys-
tem, as those involved in the NAO, must be taken with care
[Yiou et al., 1996; Wunsh, 1999]. However, this analysis of
the NAO index series may help to the understanding of
NAO dynamics origin and to provide some complementary
information that may be useful for multivariate statistical or
dynamical predictions of the NAO. Particularly, since the
methodology presented here only uses for the prediction of
the NAO state the own history of the series, our results can
be used to evaluate the importance of ‘‘external’’ variables
in predicting the NAO state.

Appendix A: Singular Spectral Analysis

[50] SSA is a powerful form of the Principal Component
Analysis (PCA) of the lag correlation structure of a time
series [Vautard et al., 1992], which is particularly successful
in isolating multiple period components with fluctuating
amplitudes and trends in short and noisy series. SSA was

first introduced into the study of dynamical systems by
Broomhead and King [1986a, 1986b] as a method of
visualizing qualitative dynamics from noisy experimental
data. In this appendix, a brief review on SSA, including a
test to study the significance of the results, is provided. A
comprehensive review, explaining in detail the mathemat-
ical foundations of SSA, is given by Vautard et al. [1992]
and Plaut et al. [1995].
[51] SSA consists of the diagonalization of the lagged-

autocovariance matrix of a time series. As in the PCA,
the eigenvectors or EOFs represent patterns of temporal
behavior, and the Principal Component series (PCs) are
characteristic time series. The order election of the
lagged-covariance matrix M (window length or embed-
ding dimension) represents a trade-off between significant
information and statistical confidence. A common recom-
mendation is to choose M � N/4, N being the length of
the data [Vautard and Ghil, 1989]. Given M as the
dimension of the lagged-covariance matrix, the PCs have
length N � M + 1. An individual PC contains a very
limited number of harmonic components. The detailed
reconstruction of a set of significant components, called
SSA-filtered components (RCs), of the time series is
carried out by an optimal linear square fitting between
the corresponding PCs and the original data. An RC
represents the contribution of its associated EOF to the
variance of the time series; the RCs are additive and their
sum provides the original time series. When two eigen-
values of the lagged-covariance matrix are nearly equal
and their corresponding eigenvectors are orthogonal, they
represent an oscillation. So, SSA extracts and reconstructs
periodic components from noisy time series. To determine
the corresponding frequencies requires, however, estima-
tions of power spectra. A consistent spectral approach,
combining SSA with the spectral Fourier method, leads to
high-resolution spectral estimates. The MEM is used to
evaluate the spectral contents of the PC time series
corresponding to the EOFs. The MEM consists of fitting
an autoregressive model to the time series and then
obtaining its associated spectrum. This method has the
advantage of having a high spectral resolution [Burg,
1968], allowing to study and detect possible oscillatory
modes in the data.
[52] Results from spectral analysis must be taken with

caution when analyzing, as in our case, short and noisy time
series [Yiou et al., 1996; Wunsch, 1999]. Special care must
be taken in the study of the significance of the results. We

Table 4. As in Table 1, but for the Subset of Cases in Which the Raw Winter NAO Index is NAO � 1 or NAO � �1

Raw winter NAO
versus SSA-filtered

winter NAO
(period 1986–2000)

Raw winter NAO
versus one-step-ahead

forecast
(period 1826–1985)

Raw winter NAO
versus one-step-ahead

forecast
(period 1986–2000)

Raw winter NAO versus
several-steps-ahead

forecast
(period 1986–2000)

MSE 1.20 1.35 1.9 2.54
MAE 0.95 1.03 1.23 1.36
Correlation coeff. 0.83a 0.82a 0.56 0.53
MSEcli 2.22 3.09 3.09
MSEper 3.28 3.63 3.63
% SMSEcli 35.0 38.5 17.8
% SMSEper 58.8 47.6 30.0
% Phase accordance 91 82 88 66

aCorrelation coefficients that are statistically significant at the 95%.
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study the statistical significance of the SSA results by
means of a Monte Carlo method, following the indications
of Allen and Smith [1994]. Given a time series of length N,
the lagged-covariance matrix Sdata is computed and their
eigenvalues (lk

data) and eigenvectors (Ek
data) are estimated by

diagonalizing the lagged-covariance matrix:

�data ¼ EdataT Sdata Edata ð1Þ

[53] A test against the null hypothesis that the data have
been generated by an AR(1) noise process can then be
computed. The expression:

ut ¼ âut�1 þ et ð2Þ

where u0 = 0, â is the expected lag-one covariance and et is
a white noise process, can be used to generate an ensemble
of surrogate time series, each containing Nt values. Time
series generated in this way are simple autocorrelated noise
containing no deterministic components. Thus, for each
surrogate record in the ensemble, the lagged-covariance
matrices, Ssurrogate, and their eigenvalues, lk

surrogate, can be
computed according to:

�surrogate ¼ EdataT Ssurrogate Edata ð3Þ

[54] The size of the ensemble (p) determines the accuracy
to which a significance level can be assessed. Using p =
1000, significance estimates are accurate to the order of 1%.
The set of p eigenvalues for each mode (k = 1, . . ., M)
can be regarded as a sample distribution from which
percentiles can be determined. The appropriate significance
level percentiles can be computed from the distributions of
lk
surrogate. If, for a given k, lk

data lies above the 95th
percentile of the lk

surrogate, then the kth eigenvector explains
an unlikely large portion of the variance in the data series
given the null hypothesis. In this work, we use a variation of
this approach, proposed by Allen [1992]. This variation
consists of using a single set of eigenvectors from the data
and project the lagged-covariance matrix of the surrogate
onto this basis to obtain lk

surrogate.
[55] Once a component of the series has been identified as

a signal, the rest of the spectrum can be examined to
determine whether or not it is simply noise. In this study,
the method described by Allen and Smith [1996, p. 3387] is
used. The aim of this methodology is to identify the null
hypothesis parameters of the red noise process, after filter-
ing to suppress variance in the directions defined by the
EOFs (that we have already identified as signal). This red
noise process must have the same variance and lag-one
autocorrelation of the data series, when the same filtering
procedure is applied. An estimate of the lag-covariance
matrix of the filtered signal is given by:

Sdata
0 � EdataðI�KÞEdataTSdata; ð4Þ

where K is a M 
 M diagonal matrix with Kkk = 0 if the
eigenvector k has been identified as corresponding to a
signal and Kkk = 1 otherwise. If the BK algorithm is used,
equation (4) is satisfied exactly. Sdata

0
can be used as an

estimate of the filtered lag-covariance matrix. Allen and

Smith [1996] provide a comprehensive review of this
technique.

Appendix B: ARMA Modeling and Forecasting

B.1. Fitting Procedure

[56] In this appendix, a briefly review of the ARMA
models [Box and Jenkins, 1976], including their definition
and modeling guidelines, and comments on the software
routines used in the work, are given. Statistical software
package S-plus (StatSci 1995) has been used. A compre-
hensive review, explaining in detail how to fit ARMA
models to data sets following the identification, estimation,
and diagnostic check stages, is given by Brockwell and
Davis [1996] and Hipel and Mcleod [1994].
[57] A stochastic process {Xt}, with mean zero, has an

ARMA(p,q) (ARIMA(p,0,q), stationary Autoregressive
Integrated Moving Average) representation if it can be
expressed in the form:

Xt � f1Xt�1 � f2Xt�2� . . . . . .� fpXt�p

¼ at � q1at�1 � q2at�2� . . . . . .� qqat�q ð5Þ

where {at} is a white noise Gaussian process (normality is
not necessary in general) with variance sa

2 and zero mean; p
and q are nonnegative integers, {f1, . . ., fp} are the
autoregressive (AR) coefficients and {q1, . . ., qq} are the
moving average (MA) coefficients.
[58] The order of the model is selected, in a preliminary

approach, studying the ACF and PACF. A satisfactory
estimate of the kth lag ACF value for a time series {xt} can
be obtained in the form [Box and Jenkins, 1976, chapter 2]:

rk ¼
Pn�k

t¼1 ðxt � �xÞðxtþk � �xÞ
Pn

t¼1 ðxt � �xÞ
� �2 ; ð6Þ

where �x is the mean of the series. A estimation of the PACF
can be carried out by fitting to the {xt} series, by least
squares and successively, autoregressive process of orders
1, 2, 3, etc, and picking our the estimates of the last fitted at
each stage [Box and Jenkins, 1976, chapter 2]:

xt ¼ a11xt�1; xt ¼ a12xt�1 þ a22xt�2;

xt ¼ a12xt�2 þ a22xt�2 þ . . .þ akkxt�k :

The PACF estimate at lag is, then, a11, at lag 2 a22 and at lag
k akk.
[59] Gaussian maximum likelihood estimates for the

{f1, . . ., fp} and {q1, . . ., qq} parameters can be calculated
using the S-plus ‘‘arima.mle’’ function. To formulate a
physically meaningful model for our time series, we must
impose some constraints (concerning the stationarity and
invertibility) on the parameters of the ARMA model, and
some consideration concerning the parsimony must be
taking into account. Besides this, a candidate model must
have a white noise process as a residual time series. In our
analysis, the residual time series has been checked using S-
plus ‘‘arima.diag’’ procedure that includes a Pormanteau
test statistic Q for the study of the correlation of a series.
This test was developed by Box and Pierce [1970] and later
refined by Ljung and Box [1978], who showed that, for a
white noise sequence {at: t = 1, . . ., n}, with m � n being
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the maximum number of lags and ĝ2k being the sample
autocovariance at lag k, the statistic:

Qm ¼ nðnþ 2Þ
Xm

k¼1

ðn� kÞ�1
ĝ2k ð7Þ

is approximately distributed as a c2 random variable with
‘‘m’’ degrees. Besides this test, a further analysis of the
residual time series was made studying its ACF and PACF.
Only those models that met the requirements were
considered further.
[60] In physical terms, the best model has as few param-

eters as possible. We have used the AIC [Akaike, 1974] to
select the final model among all the candidates. The AIC is
based on information theory and represents a compromise
between the goodness of the fit and the number of param-
eters of the model. The model with the lowest AIC value
should be selected. However, the best way to check the
adequacy of a model is to study the way in which it
forecasts the future values of the modeled series. Given
an ARMA(p,q) model, the forecast with the minimum mean
squared error for a leading time x̂t Lð Þ is the conditional
expectation Et[xt+L] of xt+L at origin ‘‘t’’:

x̂tðLÞ¼Et½xtþL¼f1Et½xtþL�1þf2Et½xtþL�2þ. . .þ fpEt½xtþL�p

þ Et½atþL�q1Et½atþL�1 � q2Et½atþL�2 � . . .� qqEt½atþL�q:
ð8Þ

[61] The forecast error et(L) can be obtained in the form:

etðLÞ ¼ xtþL � x̂tðLÞ þ atþL þ y1atþL�1 þ . . . . . .þ yL�1atþ1;

ð9Þ

‘‘yi’’ are the coefficients of the ARMA model in the random
shock form (that is, expressed as an MA(1) model). The
variance of the forecast error can then be obtained in the form:

VarðetðLÞÞ ¼ Et½etðLÞ2 ¼ ½1þ y2
1 þ . . . . . .þ y2

L�1s2
a: ð10Þ

[62] Particularly, the one-step-ahead forecast error is:

etð1Þ ¼ xtþ1 � x̂tð1Þ ¼ atþ1: ð11Þ

[63] The variance of the this {et: t = 1, . . ., n} series is
called the innovations variance and gives a measure of the
variance of the modeled series not accounted by the ARMA
model.
[64] Equation (8) states how an ARMA model forecasts

future values of a time series given the current and past
values of the series. The coefficients {fi} and {qi} of the
ARMA model are obtained in such a way that each value of
our sample series {xt} (that is, a realization of the stochastic
process {Xt}) can be calculated from a linear combination
of past values and innovations (which are samples of a
white noise process) using these coefficients as weights.
Assuming that the series is stationary, we might expect
future values (not included in our sample realization {xt})
will follow the same linear relationship between past and
current values, and, therefore these future values can be
derived using the same weights on past values.

[65] Section 3.2.2 in the work shows some forecasting
experiments based on the fitted models; subroutines ‘‘ari-
ma.filt’’ and ‘‘arima.forecast’’ of S-plus software were used,
respectively, to make one-step-ahead and several-steps-
ahead forecasts. We should be aware of the fact that
forecasts projected with ARMA models are influenced not
only by the goodness of the fit but also by the assumptions
that the underlying physical process related to the series
does not change during the forecasting time. However, this
latter assumption is hardly ever true in dynamic systems like
climate.

B.2. Separate Training and Forecast Intervals and
Cross-Validation

[66] The firm separation of training and forecast periods
is fundamental for true skill assessment. We employ data
from 1826 to 1985 to fit the model while data from 1986 to
2000 is used for a true comparison in the forecasting
experiment. Additionally, a cross-validation of the model
is conducted to validate the model. Commonly, the Cross-
validation of a regression model is carried out using devel-
opment data sets of size n � 1 and verification data sets
containing the remainder single observation of the predic-
tand, this leads to n partitions of the data set. The model is
then calculated for each of these partitions, resulting in n
similar forecast equations, each computed without one of
the observations of the predictand.
[67] This procedure cannot be applied in our case for

several reasons. Usually, in the regression models, some
variable are use to predict one other variable; in our case,
we must obtain the potentially predictable signal from the
own history of the series. When fitting ARMA models,
the temporal location of each data cares: the ‘‘history’’ of
the series is very important. When removing one single data
in the middle of the data set, the remaining data are not
useful to fit the model, because the temporal structure of the
data is then broken. Furthermore, in a regression model we
know a priori the temporal dependence between the pre-
dictand and the predictors. This allows to properly remov-
ing some samples from the data set and fitting the model
using the rest of the sample. In an ARMA model, we do not
know a priori the temporal dependence of the model.
[68] To cross-validate the ARMA model, and taking into

account this singularities of the ARMA models, we have
divided the development period 1826–1985 in two subper-
iods, 1826–1899 and 1900–1969. We have then fitted
ARMA models in these two subperiods and have carried
out one-step-ahead forecast and several-steps-ahead forecast
over 1900–1915 for the 1826–1899 subperiod model and
over 1970–1985 for the 1900–1985 subperiod model.
Results are compared with those of the whole period
1826–1985.

B.3. Setup of the ARMA Forecasting Procedure

[69] The period 1826–1985 of the filtered NAO series is
used to develop de ARMA model and the period 1986–
2000 for ‘‘true forecasting.’’ Two kinds of forecasting
experiments are carried out, the one-step-ahead forecast
and the several-steps-ahead forecast. In the first case, the
values of the winter NAO index are forecasted for the
following winter, over the period 1985–2000. Note that
the initial condition to forecast the 1986 winter NAO index
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were set up based on the state of the NAO until the previous
winter (1985), including this late; for the forecast of the 1987
winter NAO index we use the information up to the
previous winter (1986) and so on. In the second case, the
several-steps-ahead forecast, we forecast the NAO index
value for the period 1986–2010 using only the information
up to the year 1985 (including this late). Thus, the forecast
for the year 1986 is a one-step-ahead forecast, the forecast
for the year 1987 is a 2-years-ahead forecast and so on.

Appendix C: Accuracy and Skill Scores

[70] To asses the extend to which the SSA model is able
to reproduce the NAO index and the performance of the
ARMA model forecasting experiments, a set of commonly
used scores are used.
[71] First at all, the Pearson correlation coefficient is used.

As accuracy measures, the Mean Absolute Error (MAE) and
the Mean Square Error (MSE) are employed. To assess the
skill of the forecast models, the following scores are used:
1. The percentage improvement in mean square error

forecast over a climatological forecast (SMSEcl) and the
percentage improvement in mean square error forecast over
a persistence forecast (SMSEpe). Climatology is taken as the
30 values average prior each value being forecast and
persistence value is taken from the previous value to those
being forecast.
2. Additionally, the LEPS skill [Potts et al., 1996] is

computed. LEPS measures an error of a forecast as the
‘‘distance’’ in a chosen climatological cumulative prob-
ability distribution between a forecast and the correspond-
ing observation, referred to the chance distance created by
random forecast [Potts et al., 1996]. Thus, if the error in
forecast was exactly Equal to chance error, the LEPS score
would be zero. Three equiprobable categories are used
based on Table 1 [Potts et al., 1996]. LEPS are then
converted in percentage skill scores, ranging from �100 to
+100% as in section 7 of that paper.

[72] Acknowledgments. The Spanish CICYT, Project REN2001-
3923-CO2-01/CLI financed this study. We have used the SSA Toolkit
(http://www.atmos.ucla.edu/tcd/ssa).
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Grötzner, A., M. Lafif, and D. Dommenget, Atmospheric response to sea-
surface temperature anomalies during El-Niño 1997/98 as simulated by
Echam 4, Q. J. R. Meteorol. Soc., 126, 2175–2198, 2000.

Halpert, M. S., and G. D. Bell, Climate assessment for, Bull. Am. Meteorol.
Soc., 78, 50, 1997.

Hipel, K. W., and A. I. Mcleod, Time Series Modelling of Water Resources
and Environmental Systems, 1013 pp., Elsevier Sci., New York, 1994.

Hurrell, J. W., Decadal trends in North Atlantic Oscillation and relationship
to regional temperature and precipitation, Science, 269, 676–679, 1995.

Hurrell, J. M., Influence of variations in extratropical wintertime telecon-
nections on Northern Hemisphere temperatures, Geophys. Res. Lett., 23,
665–668, 1996.

Hurrell, J. W., and H. van Loon, Decadal variations in climate associated
with the North Atlantic Oscillation, Clim. Change, 36, 301–326, 1997.

Jones, P. D., The early twentieth century Arctic High: Fact or fiction?, Clim.
Dyn., 1, 63–75, 1987.

Jones, P. D., T. Jonsson, and D. Wheeler, Extension to the North Atlantic
Oscillation index using early instrumental pressure observations from
Gibraltar and southwest Iceland, Int. J. Climatol., 17, 1–18, 1997.

Kiladis, N., and H. F. Dı́az, Global climatic anomalies associated with
extremes of the Southern Oscillation, J. Clim., 2, 1069–1090, 1989.

Latif, M., D. Anderson, T. Barnett, M. Cane, R. Kleeman, A. Leetman,
J. O’Brien, A. Rosati, and E. Scheneider, A review of the predictability
and prediction of ENSO, J. Geophys. Res., 103, 14,375–14,393, 1998.

Ljung, G. M., and G. E. Box, On a measure of lack of fit in time series
models, Biometrika, 65, 297–303, 1978.

Moses, T., G. Kiladis, H. F. Dı́az, and R. Barry, Characteristic and fre-
quency of reversal in mean sea level pressure in the North Atlantic sector
and their relationship to long-term temperature trends, Int. J. Climatol., 7,
13–30, 1987.

Osborn, J., K. R. Briffa, S. F. B. Tett, P. D. Jones, and R. M. Trigo,
Evaluation of the North Atlantic Oscillation as simulated by a coupled
climate model, Clim. Dyn., 15, 685–702, 1999.

Panckratz, A., Forecasting with Dynamic Regression Models, John Wiley,
New York, 1991.

Perlwitz, J., and H. F. Graf, The statistical connection between tropospheric
and stratospheric circulation of the Northern Hemisphere in winter,
J. Clim., 8, 2281–2295, 1995.

Plaut, G., M. Ghil, and R. Vautard, Interannual and interdecadal variability
in 335 years of central England temperatures, Science, 268, 710–713,
1995.

Pozo-Vázquez, D., M. J. Esteban-Parra, F. S. Rodrigo, and Y. Castro-Dı́ez,
An analysis of the variability of the North Atlantic Oscillation in the time
and the frequency domains, Int. J. Climatol., 20, 1675–1692, 2000.

Pozo-Vázquez, D., M. J. Esteban-Parra, F. S. Rodrigo, and Y. Castro-Dı́ez,
A study on NAO variability and its possible non-linear influences on
European surface temperatures, Clim. Dyn., 17, 701–715, 2001a.

Pozo-Vázquez, D., M. J. Esteban-Parra, F. S. Rodrigo, and Y. Castro-Dı́ez,
The association between ENSO and winter atmospheric circulation and
temperature in the North Atlantic region, J. Clim., 2001b.

Rajagopalan, B., Y. Kushnir, and Y. Tourre, Observed decadal midlatitude
and tropical Atlantic climate variability, Geophys. Res. Lett., 25, 3967–
3970, 1998.

Robertson, A. W., On the influence of ocean–atmosphere interaction on the

XX X - 14 GAMIZ-FORTIS ET AL.: NAO ASSESSED THROUGH SSA



Arctic Oscillation in two general circulation models, J. Clim., 14, 3240–
3254, 2001.

Robertson, A. W., C. R. Mechoso, and Y. J. Kim, The influence of the
Atlantic Sea surface temperature anomalies on the North Atlantic Oscil-
lation, J. Clim., 13, 122–138, 2000.

Rodrigo, F. S., D. Pozo-Vázquez, M. J. Esteban-Parra, and Y. Castro-Dı́ez,
A reconstruction of the winter North Atlantic Oscillation index back to
A.D. 1501 using documentary data in southern Spain, J. Geophys. Res.,
14, 805–818, 2001.

Rodwell, M. J., and C. K. Folland, Atlantic air– sea interaction and seasonal
predictability, Q. J. R. Meteorol. Soc., in press.

Rodwell, M. J., D. P. Rowell, and C. F. Folland, Oceanic forcing of the
wintertime North Atlantic Oscillation and European climate, Nature, 398,
320–323, 1999.

Rogers, J. C., The association between the NORTH Atlantic Oscillation and
the Southern Oscillation in the Northern Hemisphere, Mon. Weather Rev.,
112, 1999–2015, 1984.

Ropelewski, C. F., and P. D. Jones, An extension of the Tahiti –Darwin
Southern Oscillation index, Mon. Weather Rev., 115, 2161–2165, 1987.

Stephenson, D. B., V. Pavan, and R. Bojariu, Is the North Atlantic Oscilla-
tion a random walk?, Int. J. Climatol., 20, 1–18, 2000.

Taylor, A. H., and J. A. Stephens, The North Atlantic Oscillation and the
latitude of the gulf stream, Tellus, A50, 134–142, 1998.

Timmermann, A., M. Latif, R. Voss, and A. Grötzner, Northern Hemi-
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