
� Corresponding author. Fax: +
E-mail address: gabriel.lopez@

0360-5442/$ - see front matter #
doi:10.1016/j.energy.2004.04.035
34-959-017-304.
die.uhu.es (G. López).
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Abstract

A very important factor in the assessment of solar energy resources is the availability of direct
irradiance data of high quality. However, this component of solar radiation is seldom measured and thus
must be estimated from data of global solar irradiance, which is registered in most radiometric stations.
In recent years, artificial neural networks (ANN) have shown to be a powerful tool for mapping complex
and non-linear relationships. In this work, the Bayesian framework for ANN, named as automatic
relevance determination method (ARD), was employed to obtain the relative relevance of a large set of
atmospheric and radiometric variables used for estimating hourly direct solar irradiance. In addition, we
analysed the viability of this novel technique applied to select the optimum input parameters to the
neural network. For that, a multi-layer feedforward perceptron is trained on these data. The results
reflect the relative importance of the inputs selected. Clearness index and relative air mass were found to
be the more relevant input variables to the neural network, as it was expected, proving the reliability of
the ARD method. Moreover, we show that this novel methodology can be used in unfavourable
conditions, in terms of limited amount of available data, performing successful results.
# 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Most solar energy applications such as the simulation of solar energy systems require, at the
least, a knowledge of hourly values of solar radiation on a tilted and arbitrarily oriented
surface. Knowledge of direct irradiance is important in applications where the solar radiation is
concentrated, either to raise the temperature of the system, as in solar thermal energy
technologies, or to increase the intensity of the electric current in solar cells, as in photovoltaic
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systems. In the absence of direct irradiance data, this component of solar radiation may be
estimated using decomposition models. They calculate direct irradiance from global solar
irradiance on a horizontal surface. These models are based on the regressions between two
dimensionless indices: the clearness index, kt (horizontal global irradiance/horizontal extra-
terrestrial irradiance) and the direct solar transmittance, kb (direct normal irradiance/extra-
terrestrial irradiance).

However, the relationship kb–kt is far to be one-to-one because of the complex processes
affecting solar radiation throughout the atmosphere. In this sense, there is a wide range of
values attained by kb for a given kt at intermediate clearness index values. The main reason for
the high spread observed on the kb–kt scatter plots comes from cloud effects. Nevertheless, the
above problem has led to include additional atmospheric and meteorological parameters to the
decomposition models in order to improve their performance and to account for different
climatic conditions. In the literature, there are models that use different input sets for estimating
direct transmittance, involving variables such as solar elevation, relative air mass, precipitable
water, dew point temperature, temperature, relative humidity, atmospheric turbidity or surface
albedo [1–5].

The study of the influence of these variables on kb–kt regressions by using traditional statisti-
cal methods is complicated and time consuming. In addition, if analytical models are to be
developed, it is needed to have a priori information about the structure of the mathematical
relationships between variables. These relationships appear to be non-linear and difficult to
handle with standard statistical techniques. This is the case for instance to provide a simple
continuous function f, in such a way that kb ¼ f ðktÞ for every kt-value. If new input variables
are to be added to the model, the use of the conventional multiple linear regression will become
inappropriate, whereas if non-linear regression is to be used, an explicit function should be
provided in advance. Moreover, the latter procedures are static in the sense that the nature of
the model cannot be changed. Similarly, computer regression programs cannot learn or become
smarter.

An alternative way to avoid the above problems is to employ artificial neural networks
(ANN). Among the multiple utilities of the ANN (such as pattern recognition and classification,
function approximation, prediction, etc.), we emphasise their growing use for data analysis,
offering an effective alternative to more traditional statistical techniques in many scientific fields.
Particularly, in the meteorological and solar energy resources fields, ANN based models have
been successfully developed to model different solar radiation variables improving the existing
statistical approaches [6–11]. In this sense, it is very important to have simple and accurate
models relating solar radiation variables to each one or/and to atmospheric and meteorological
variables. This is because most studies for the utilisation of solar energy require data that are
seldom available at the location of interest and need to be estimated from whatever limited data
are at hand there. This is the common problem exhibited in using data of the direct normal
component of the solar irradiance [5]. Since neural networks are highly non-linear and require
no prior assumptions concerning the data relationships, they have become an useful tool to
tackle the direct solar irradiance modelling.

Nevertheless, despite the advantages in using ANN, they present some drawbacks. One is
concerning with ANN, as ANN are able to include any superfluous input variable to the model,
increasing complexity and given erroneous information about the true variables that affect the
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dependent one. The other one is the need to divide the data set into three subsets (training,
testing and validation sets) which may become a problem if only a few data are available.
The Bayesian method of ARD [12,13] for multilayer feedforward perceptron networks (MLP)
solves both problems simultaneously: it provides the relative importance of different inputs to
the ANN and avoids the need to use separate testing and validation data, thanks to the
inclusion of regularization coefficients inside the ANN structure.

In this preliminary work, we test the sensibility of the ARD method for selecting the more
relevant input parameters affecting the direct solar transmittance. For this purpose, we have
tried to collect the commonest radiometric and meteorological variables used by empirical mod-
els, such as it was explained above, as well as other additional parameters, such as wind speed
and pressure, which are not expected to be significant a priori. In this sense, since wind speed
could account for seasonal variations of atmospheric turbidity [14], and thus to present some
significance, we have taken into account a site with low annual levels of aerosol particles, as we
had proved in a previous study.
2. Methodology

The neural network selected here is a MLP [15] with one single hidden layer and one single
output. Fig. 1 shows the topology of this ANN. Every layer is formed from elemental units
named neurones or nodes. Neurons in the input layer only receive the input signals ~xx and
distribute them forward to the network. In the following layers, each neuron receives a signal,
which is a weighted sum of the outputs of the nodes in the layer below. Inside each neuron, an
activation function controls its output. The activation function used for the hidden units is the
hyperbolic tangent (tanh) whereas the identity function has been used for the output ones. Such
a network determines a non-linear mapping from an input vector (radiometric and atmospheric
variables) to the output (direct solar transmittance) parameterised by a set of network weights,
Fig. 1. Topology of the multilayer perceptron.
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which we refer to as the vector of weights ~ww. Following notation from Fig. 1, the output y given
by this ANN is the following notation from Fig. 1

y ¼
XNh

n¼1

woutput
n tanh

XNi

m¼0

whidden
mn xm

 !
þ woutput

0 (1)

Once the MLP topology is fixed, the ANN learns the relationship between input and output
parameters from examples. For that, the network must be trained. The network training is the
procedure where the weights are adjusted based on training data. The training data is a set of
patterns consisting of input and corresponding output values, so-called target values. The train-
ing method used in this work is named as supervised training. The patterns in the training set
are presented to the network one at a time, and following a random sequence for optimal learn-
ing. For each sample, outputs obtained by the network are compared with the desired outputs.
After the entire training pattern has been processed, the weights are updated. This updating is
done in such a way that a measure of the error in the network’s results is minimised. As a
consequence, the ANN is able to include all input parameters presented to: relevant and unre-
levant parameters. This is an undesirable outcome in order to obtain a simple model. To avoid
this situation, different techniques have been developed. One of the most efficient methods is
based on Bayesian framework for ANN.

Bayesian framework for ANN is based on a probabilistic interpretation of network training,
providing a useful method for determining the relevance of input parameters named as ARD
method [16–19]. The Bayesian approach considers a priori probability distribution over the
network weights p ¼ ð~wwj~aaÞ given the vector of hyperparameters ~aa (which represents the weight
decay regularizers). For that, all the weights associated with the same input node are grouped
and a hyperparameter, ag, is introduced for each of them (see Fig. 2). This hyperparameter con-
trols the prior distribution, which is achieved by using a Gaussian distribution with zero mean

and variance r2
g ¼ 1=ag, from which the random weights in the gth weight group are sampled.
tation of the multilayer perceptron with automatic relevance
Fig. 2. Graphical represen determination. The hyper-
parameters fa1; . . . ; aNi

g control the weights connecting each input to the hidden layer.
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A prior distribution pð~aaÞ determines the initial values of ag. Three additional hyperparameters
are also defined to account for the remainder groups of the network parameters (input bias,
hidden bias and hidden weights). These control the complexity of the model. After, once the
training data set, D, has been presented to the network, the posterior weight and ~aa distributions
are found by using the Bayes theorem

p ~wwj~aa;Dð Þ ¼ p Dj~wwð Þp ~wwj~aað Þ
p Dj~aað Þ (2)

p ~aajDð Þ ¼ p Dj~aað Þpð~aaÞ
pðDÞ (3)

where pðDj~wwÞ is the likelihood and pðDj~aaÞ is termed as the evidence for ~aa. These probability
distributions are determined using MacKay’s evidence procedure [12].

In this paper, the evidence procedure is carried out ‘s’ iterative sessions. Each session involves
two steps. The first step calculates the weights maximising the likelihood by means of a stan-
dard training of the ANN. The training algorithm selected was the scaled conjugate gradient
[20], which performs ‘c’ network training cycles. In the second step, the hyperparameters are
re-estimated ‘n’ times to provide the maximum evidence. The weights of an input with a large ag
are closed to zero, and thus the corresponding input is not as relevant as in order to explain the
variability of the dependent variable. Thus, ARD allows the network to determine automati-
cally the importance of each input, effectively turning off those that are not relevant. Further-
more, the early ‘stopping’ procedure for network training is avoided. The ARD method was
performed using MATLAB [21] code in conjunction with several routines developed by Bishop
and Nabney [22,23].

3. Data and measurements

The data set was collected at one radiometric station located at Desert Rock (36.63
v

N,
116.02

v
W, 1007 m) (USA), between 1998 and 1999. This station is part of NOAA’s Surface

Radiation budget network (SURFRAD) [24]. The data set contains records of global and direct
solar irradiance, temperature, relative humidity, surface pressure and wind speed. Global
irradiance was measured by means of an Eppley ventilated pyranometer model PSP, whereas an
Eppley normal-incident pyrheliometer (NIP) was employed to measure the direct irradiance.
Measurements of temperature T, relative humidity RH, and pressure p, were registered by
means of standard sensors housed in a radiation shield. A propeller anemometer/vane combi-
nation was used to account for the wind. Two additional parameters were derived from the
measured data: the dew point temperature Td, and the precipitable water, w. Solar position was
taken into account by using the cosine of solar zenith angle, hz. The relative optical air mass,
mr, was also obtained.

Desert Rock was selected among several stations due to its clear atmosphere, in the sense of
low amount of aerosols, high altitude, and no seasonal changes in vegetation. The first two
conditions minimise the attenuation of the direct irradiance by aerosols (one of the main attenu-
ation sources), and the third one ensures a constant albedo. These facilities allow to analyse the
relationships between other variables and direct solar irradiance in a more easy way. Hourly
averaged values were obtained for all variables. Due to cosine response problems of radiometric
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sensors, we have only used cases corresponding to solar zenith angles less than 85
v
.

Consequently, 4880 h were employed. The input and output values were linearly scaled to lie in
the range (0,1) using the maximum and minimum recorded value for each variable.
4. Results

To develop an ANN based model, several free parameters must be fixed before the training
stage. For our multilayer perceptron based models, these free parameters are the input and
hidden unit numbers, Ni and Nh, respectively. Because of computer limitations, Nh may be
bounded and depend on the training pattern number, Np (or vice-versa). At the same time, the
training pattern number depends on the selected location and the amount of available measure-
ments there. Once these network parameters are defined, the network training is determined by
the above noted training parameters: c, n and s. We will analyse the ARD results by varying
these parameters, but n, which was set to 5.

Fig. 3 shows the log-values of the hyperparameters versus training session, s, for two multi-
layer perceptrons with 10 and 2 hidden units, MLP10 and MLP2, respectively. For each one, 30
and 200 training cycles, c, were accomplished using the whole database (4880 h). A noted
important feature is the constant values of the hyperparameters after several training sessions.
This behaviour is more marked if the number of the hidden units is low. This is because a more
complex ANN needs more training cycles to capture the underlying relationships between the
f the hyperparameters versus training session, s. Two MLPs with 10 and 2 hid
Fig. 3. Log-values o den units (Nh) were
trained using 30 and 200 training cycles, c. The whole database (4880 h) was employed.
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inputs and the outputs. In this sense, it is observed how the values of the hyperparameters
obtained with MLP10 and trained with only 30 cycles are close to each other, providing no
useful information. If training cycles c is increased, the ARD method seems to differentiate the
relevance of the inputs in a better way. Therefore, a prescription to employ the ARD method
for selecting the more relevant inputs is to use an ANN with few hidden units and try to
perform a large number of training cycles. It is important to note that, as opposite to the stan-
dard ANN training, increasing the training cycles does not lead to overfit to the data due to the
regularization terms introduced via the hyperparameters.

For all cases, the clearness index, kt, is the more relevant input and the next one is the relative
air mass, mr. It is interesting to note that by using ANN with the ARD method, it is not needed
to search the significance of higher degree terms in kt or mr (as needed by employing multiple
linear regression techniques), since the non-linear relationships between these variables and kb is
implicitly explained by the network. On the other hand, relative humidity appears to be the
minor relevant input. Similarly, the temperature hyperparameter is high when MLP2 is utilized,
pointing out to discard this variable as input to the kb–kt regressions, at least only when data
from one climatic condition is involved. Wind speed, pressure, precipitable water and dew point
temperature present hyperparameters with two and three orders of magnitude higher than that
corresponding to kt. Therefore, the relative relevance of these variables is almost null against the
clearness index and they could be excluded from the model.

However, it is interesting to analyse the relative relevance of these parameters (based on the
results given by the MLP2 trained with 200 cycles), to check the reliability of the ARD method.
Dew point temperature is the more significant one among them. Since both precipitable water
and dew point temperature account for the attenuation of direct irradiance by atmospheric
water vapor, this finding points out that: (a) this process affects slightly the kb–kt regressions (as
it could be expected), and (b) dew point temperature appears to be more appropriate than
precipitable water to be included in an ANN model. On the other hand, the higher relative
relevance of pressure against relative humidity or temperature was not expected a priori.
The reason for that could be due to the ability of pressure to distinguish cloudy (associated with
cyclonic conditions with low pressure values) from cloudless conditions (associated with anti-
cyclonic conditions with high pressure values) and, in this way, to explain a few of the variance
of direct transmittance. In fact, Kemmoku et al. [25] employed pressure as an input parameter
to a multi-stage neural network to forecast daily insolation levels. Nevertheless, the significance
level of this parameter (as proved by its corresponding hyperparameter value) is too low to
perform any improvement in the models.

In order to test the sensibility of the ARD method against the amount of input information,
we perform another trial similar to the above but using 1080 h selected by random sampling.
The results shown in Fig. 4 agree with the first ones. The clearness index and the relative air
mass present the smallest values of the hyperparameters. However, although the hyper-
parameter of the relative humidity for MLP2 is large, pressure becomes the minor relevant
input, as a possible consequence of the decreasing information utilized and the low significance
level exhibited in the above trial. Moreover, the hyperparameters associated with Td, w, wind
speed and cos hz increase their values around two orders of magnitude against those presented
using the whole data set, corroborating their low relevance. These outcomes point to ARD like
a robust method to determine the most relevant inputs when only few data are available.
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Finally, it is important to note that although cos hz and w are found as irrelevant variables,

this is only because of mr and Td were more suitable to be computed by the ANN. If these latter

parameters have been removed, then cos hz and w would become more relevant.
5. Conclusions

The present work has shown the powerful nature of the novel Bayesian method of the auto-

matic relevance determination to evaluate the more relevant input parameters in modelling

direct solar irradiance by using ANNs. In this sense, the relevant variables for estimating the

direct irradiance are the clearness index and the relative air mass, which are in agreement with

the existing studies, demonstrating the reliability of the ARD method. We also show that the

best option to obtain the more relevant input variables from the ARD method is to use ANN

with a low number of hidden units.
On the other hand, we have found that this methodology can be applied to locations with

limited amount of measurements and avoid the delicate problem of dividing the data set into

three subsets (training, validation and test sets). Under these conditions, ARD provides reliable

information about the more relevant inputs. In addition, the use of Bayesian framework for

ANN is portable for modelling any radiometric variables from other parameters, providing the

best option against traditional statistical techniques and other ANN based models.
f the hyperparameters versus training session, s. Two MLPs with 10 and 2 hid
Fig. 4. Log-values o den units (Nh) were
trained using 30 and 200 training cycles, c. The whole database (1080 h) was employed.
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