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a b s t r a c t

In this work, we propose a new regressive model for the estimation of the hourly diffuse solar irradiation
under all sky conditions. This new model is based on the sigmoid function and uses the clearness index
and the relative optical mass as predictors. The model performance was compared against other five
regressive models using radiation data corresponding to 21 stations in the USA and Europe. In a first part,
the 21 stations were grouped into seven subregions (corresponding to seven different climatic regions)
and all the models were locally-fitted and evaluated using these seven datasets. Results showed that
the new proposed model provides slightly better estimates. Particularly, this new model provides a rel-
ative root mean square error in the range 25–35% and a relative mean bias error in the range �15% to 15%,
depending on the region. In a second part, the potential global character of the new model was evaluated.
To this end, the model was fitted using the whole dataset. Results showed that the global fitting model
provides overall better estimates that the locally-fitted models, with relative root mean square error val-
ues ranging 20–35% and a relative mean bias error ranging �5% to �12%. Additionally, the new proposed
model showed some advantages compared to other evaluated models. Particularly, the sigmoid behav-
iour of this model is able to provide physically reliable estimates for extreme values of the clearness index
even though using less parameter than other tested models.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The amount of solar radiation available on the tilted surface is a
key factor in numerous solar energy applications, as thermal and
photovoltaic energy systems or self-sustainable buildings. Addi-
tionally, it is known that solar radiation rules the life by providing
the energy required in many natural process, as the photosynthesis
[1,2]. For this reason, this parameter is also important in environ-
mental studies, particularly in those areas, as most part of natural
parks, where the usual complex topography may drastically
change the incoming solar radiation received on the horizontal sur-
face on the ground [3–5].

To compute the amount of solar radiation striking a tilted sur-
face, the beam and diffuse components of the radiation are needed
since the different physical nature of these components deter-
mines how they are projected on the surface. Nevertheless, the di-
rect measurement of beam or diffuse components requires
complex devices with a high maintenance cost. This explains the
scarce availability of this kind of solar radiation data compared
to the horizontal solar global radiation. As a consequence, several

approaches have been proposed to derive solar radiation compo-
nents datasets.

As it is known, the interaction between the atmosphere and the
solar radiation coming from the Sun, which results in a decompo-
sition into the solar radiation components, is highly complex. The
complete modelling of this interaction has been only recently pos-
sible, through the use of Numerical Weather Prediction (NWP)
models, as for example, the Weather Research and Forecasting
Model (WRF) [6]. Particularly, these models simulate the interac-
tion of the solar beam with the atmosphere providing the solar
fluxes at the surface as one of their outputs. Spatial resolution of
these models can reach up to 1 km in reduced areas, making pos-
sible the assessment of the global solar radiation in terms of its
beam and diffuse components. The main problem related to the
NWP models is their relative complexity and time-demanding
computational cost. Another alternative to calculate the solar radi-
ation components is the use of a broadband solar radiation model
(many of them integrated within a Geographical Information Sys-
tem) [7–11]. These are a simplified modelization of the atmosphere
that only takes into account its radiative properties providing rel-
atively accurate estimates under clear-sky conditions. However,
its reliability under other sky conditions is considerable lower.

All these methodologies rely mainly on the physical processes
across the atmosphere in order to estimate the solar radiation
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components. Nevertheless, another different approach is the use of
statistical relationships based on observed databases. The aim is to
obtain statistical models that relate measured global, diffuse and/
or direct solar radiation data [12,13]. Sometimes, other variables
are also taken into account within these statistical models [14].
The statistical approach represents in an easier manner the com-
plex processes that the solar beam suffers in its path trough the
atmosphere, although giving up the potential reliability of more
sophisticated models as with NWP models, for example. In this
context, the hourly interval offers an appropriate agreement be-
tween data availability and the inherent solar radiation temporal
variability. As a consequence, most of the statistical models are
based on the hourly interval of the solar radiation data.

The pioneer study in relating the global radiation and its diffuse
counterpart was the Liu and Jordan [15] work, using daily values
collected in Massachussets, USA. Orgill and Hollands [16] proposed
a regression equation between the hourly clearness index and the
hourly diffuse fraction based on data collected during four years in
Toronto, Canada. Erbs et al. [17], using data from four stations in
the USA, proposed another regression that was validated with
three years of data in Australia. Reindl et al. [14] introduced new
predictors in the relation. They began studying a set of 28 predic-
tors and, finally, reducing the set to four: clearness index, sine of
the solar altitude, monthly mean hourly ambient temperature
and monthly mean hourly ambient relative humidity fraction. They
trained the model using data collected at five stations (one in the
USA and the rest in Europe), and validated the results using data
collected at Albany, NY, USA.

The former models are based on piecewise regression equa-
tions, which divide the clearness index range into different inter-
vals depending on the study. The diffuse fraction is then fitted
for each interval with a polynomial function of a given order. Par-
ticularly, Orgill and Hollands [16] and Reindl et al. [14] used a first-
order polynomial for the intermediate clearness index range while
Erbs et al. [17] used a fourth-order polynomial. More recently,
some authors have proposed new regression equations that are
not defined as a piecewise function of the clearness index. Particu-
larly, Muneer and Munawwar [18] studied the influence of the syn-
optic variables, sunshine fraction, cloud cover and optical air mass
and their potential ability to improve the estimation of the diffuse
fraction. This work had its continuity in Muneer et al. [19]. In the
later, the authors proposed to use second-order polynomials for
the clearness index and linear or squared relationships for the syn-
optic variables. This study was carried out using nine stations
spread out over India, Japan, Spain and United Kingdom. Clarke
et al. [20], using 5 min data collected in Edimburgh during the per-
iod 1993–1994, also proposed a quadratic or cubic polynomial cor-
relation for all the range of variation of the clearness index.

Nevertheless, the ‘‘classical” approach of splitting up the clearness
index into intervals has been also recently followed by Jacovides
et al. [21], for example. Based on data collected in Cyprus, they pro-
posed to use a third-order polynomial for the intermediate range of
the clearness index. A review of some of the existing models for the
Mediterranean area is provided by Notton et al. [22]. It is also
worth to mention the very interesting works of Perez et al. [23]
and Skartveit et al. [24] where the authors also consider the hourly
variability of the solar global irradiation in the estimation of the so-
lar radiation components. This is a very convenient approach to
somehow include the effect of the clouds. Ineichen [13] has re-
cently published a comparison of these models.

In this work, we present a regressive model based on the sig-
moid function to obtain the diffuse fraction with the clearness in-
dex and the pressure-corrected optical air mass as predictor
variables. The use of more predictors could improve the perfor-
mance of the model [12,14,18], but most of these predictors (usu-
ally synoptic variables) are not easily available everywhere.
Therefore, in this work it has been rather preferred to not include
any synoptic predictor making the model more general. The mod-
el’s performance has been compared against that of other models
proposed in the bibliography. For a fair comparison, these later
models have been re-calibrated based on the dataset used in this
study. The work is organized as follows: the dataset used in the
study and the quality control procedure applied to the radiation
data are described in Section 2. Section 3 presents the here pro-
posed and the other tested models. Section 4 presents the results
of the models evaluation and, in Section 5, an additional analysis
is presented evaluating the potential global character of the pro-
posed model. Finally, a summary and the conclusions of the work
are presented in Section 6.

2. Database

The dataset used in this work consists of global and diffuse solar
radiation measurements from 21 locations spread over Europe and
the United States (Fig. 1). Particularly, the European part of the
dataset is comprised by six stations: three of them in Germany
and the rest in Spain. The German stations belong to the European
Solar Radiation Atlas database (ESRA) [25], with hourly data cover-
ing the period from 1981 to 1990. The measurements have been
collected using pyranometers to measure the hemispherical hori-
zontal solar irradiance and solar trackers equipped with shading
disks to shield the direct component and record the diffuse irradi-
ance. The uncertainty of the practical pyrheliometers used to reg-
ister the direct beam irradiance is in the best case the 3%
whereas the lowest uncertainty of the pyranometers increases up

Fig. 1. Geographical location of the stations.
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to 5%. Nowadays, in the best case, the uncertainty in the diffuse
horizontal irradiance is on the order of 3% ±2 W m�2 but it may in-
crease up to 15–20% if the measure has been taken using a shield-
ing shadow band [26].

The Spanish stations pertain to the Agencia Estatal de Meteoro-
logía (AEMET), which is responsible for their maintenance. The
data has been collected using pyranometers Kipp & Zonen CM11
equipped with shadow bands for registering the diffuse irradiance.
After quality control, a shadow band correction procedure was ap-
plied. The correction algorithm was validated in Southern-Spain by
López et al. [27] in a region with pretty similar climatic character-
istics to that of the Spanish stations used in this work (Section 2.1).
The authors compared four well-known shadow band diffuse irra-
diance correction algorithms with data collected also with a Kipp &
Zonen CM11 pyranometer in the meteorological station at the Uni-
versity of Almeria. They reported a final root mean square error of
13% and a mean bias error of �5% in the diffuse component which
might be extrapolated to the three Spanish stations.

The rest of stations of the dataset, located in the USA, are part of
the National Solar Radiation Data Base (NSRDB) and cover the per-
iod 1961–1990. In the nomenclature of the NSRDB, all these sta-
tions are referred as primary stations given that they contain
measured solar radiation data for at least a portion of the 30 years
record. In the case of Alaska, it has been used two secondary sta-
tions (only containing modelled data) at Bethel and Talkeetna. This
decision was adopted in order to have three stations in this region:
one for calibrating the model and the other two for validation pur-
poses. Ideally, the use of modelled data to derive a new model
should be avoided. Nevertheless, the NSRDB offers desirable prop-
erties as homogeneity and a long enough period of measurements
for climatological studies (the World Meteorological Organization
recommends the use of 30-year periods of data). Table 1 shows
the proportion of measured and modelled daylight hours as well
as the mean estimated uncertainty level for each radiation compo-
nent for the NSRDB stations here used. This table reveals a mean
approximated uncertainty between 9% and 13%, regardless the per-
centage of modelled data and the solar radiation component. The
uncertainty is here defined as the interval around a measured or
modelled data value within which the true value will lie 95% of
the time [28]. Almost the entire dataset is flagged with uncertainty
flags from 4 to 6 which, according to NREL [28] Section 3.4, that
roughly correspond to an uncertainty ranging from 6% to 18%.
The mean estimated uncertainty in Table 1 has been calculated
averaging the flag values, interpreted as continuous values, and

then the associated uncertainty estimated by linear interpolation.
For example, ‘‘mean uncertainty flags” for the station at Boulder
are 4.33, 4.87 and 3.92 for the horizontal global, diffuse and direct
normal irradiances, respectively (uncertainty flag 3 corresponds to
an uncertainty of 4–6%, flag 4 to 6–9% and flag 5 to 9–13%). Linear
interpolation yields uncertainties of 10.6%, 12.1% and 9.5%, respec-
tively. The relative low level of uncertainty reported in the NSRDB
and the formerly commented properties encourage the use of this
dataset in the present work. Obviously, the final uncertainty of the
derived models will result of the composition of the initial uncer-
tainty of the data and the intrinsic uncertainty of the models and
the methodology.

Given the long time period registered and the wide region cov-
ered by the database, several different methodologies and instru-
mentation have been employed along the data recording process,
from modelled data values using other meteorological variables
to Eppley pyranometers. A brief history of the solar radiation mea-
surements can be found in the user’s manual of the database [28].

Additionally, it is worth to remark that some authors have rec-
ommended the use of global solar irradiance calculated from direct
and diffuse measured irradiances as Michalsky et al. [29]. Particu-
larly, the model considered here is better derived using only these
components. Nevertheless, the length of the available high quality
series of simultaneously measured direct and diffuse irradiances is
scarce. Then, the measured global solar irradiance with un-shaded
pyranometer is an assumable alternative.

Table 2 shows the main geographic characteristics of the sta-
tions. Particularly, the stations cover a wide range of latitudes
within the northern hemisphere, ranging from 30.38�N (Tallahas-
see, USA) to 64.82�W (Fairbanks, USA). Stations also span a consid-
erable range of terrain heights: from sea level (e.g., San Diego, USA)
to almost 2000 m (Ely, USA). Additionally, Table 2 presents details
about the climatic conditions of the stations locations, according to
the Koeppen climatic classification. This climatic scheme divides
the climate in five main types and some subtypes, based mainly
on mean temperature and precipitation values. Each particular cli-
mate is symbolized by 2–4 letters. The work of Peel et al. [30] has
been used to elucidate the climate of each one of these sites. With-
in the 21 stations, nine have B type classification, meaning an arid
climate. Five stations present a temperate climate, symbolized
with the C type, and the rest of stations a cold climate (D type).
Therefore, it can be concluded that the stations represent a consid-
erable range of climatic conditions.

2.1. Quality control procedure

With the aim of homogenizing the complete datasets involved
in the study, all the data values have been subjected to the quality
control procedure described in Younes et al. [31] that, according to
these authors, may be used with equal effectiveness for any terres-
trial dataset. Note that the SERI QC quality control procedure has
been already applied to the NSRDB, and the application of a new
quality control should not be inconsistent but rather involving an
eventually more restrictive procedure. Following is detailed the
four-step quality control here applied.

2.1.1. First test
This test deals with the intrinsic cosine error of the pyranomet-

ric sensors. As Younes et al. [31] recommend, all the data values
corresponding to a solar altitude a below 7� have been rejected:

a P 7:0�: ð1Þ

2.1.2. Second test
This is a physical limit imposed to the value of the hemispher-

ical horizontal global solar irradiance, IG, and the horizontal diffuse

Table 1
Proportion of measured (M) and modelled (P) daylight hours (in percent) of the
NSRDB selected stations and mean approximated uncertainty (U, in percent) based on
the quality flags of the data. Measured data include that derived with the closure
relation (flag D, see Section 3.4 in NREL [28]). For a detailed explanation on the
calculation of the mean estimated uncertainty, see Section 2.

Global Direct Diffuse

M P U M P U M P U

Tallahassee 15.0 85.0 11.3 12.9 87.1 10.1 12.9 87.1 12.6
Savannah 16.6 83.4 11.4 15.3 84.7 10.8 15.3 84.7 12.5
Atlanta 2.9 97.1 11.0 2.9 97.1 9.7 2.9 97.1 12.5
Midland 10.2 89.8 11.2 8.3 91.7 9.9 8.3 91.7 12.6
Tucson 7.4 92.6 11.2 5.8 94.2 10.0 5.7 94.3 12.6
San Diego 3.2 96.8 11.1 2.9 97.1 10.2 2.9 97.1 12.7
Nashville 50.5 49.5 10.3 14.3 85.7 9.7 14.3 85.7 12.4
Pittsburgh 8.5 91.5 11.3 6.6 93.4 10.0 5.3 94.7 12.7
Albany 9.1 90.9 11.2 9.1 90.9 9.8 9.1 90.9 12.5
Boulder 29.5 70.5 10.6 27.6 72.4 9.5 27.6 72.4 12.1
Ely 35.5 64.5 11.2 17.8 82.2 10.2 17.4 82.6 12.7
Lander 26.6 73.4 11.4 23.3 76.7 10.2 23.3 76.7 12.8
Bethel 0.0 100.0 11.6 0.0 100.0 11.4 0.0 100.0 13.1
Talkeetna 0.0 100.0 11.7 0.0 100.0 11.5 0.0 100.0 13.1
Fairbanks 2.3 97.7 11.8 0.0 100.0 10.8 0.0 100.0 12.7

J.A. Ruiz-Arias et al. / Energy Conversion and Management 51 (2010) 881–893 883



Author's personal copy

solar irradiance, ID. The limits are based on the clearness index, kt,
and the diffuse fraction, k, defined as:

kt ¼
IG

I0 cos Z
; ð2Þ

k ¼ ID

IG
; ð3Þ

where I0 is the extraterrestrial direct irradiance and Z is the solar ze-
nith angle. For the sake of completeness, it is also important to de-
fine the direct fraction, Fb, as the ratio of the horizontal direct solar
irradiance, IB, to the horizontal global solar irradiance:

Fb ¼
IB

IG
: ð4Þ

According to these definitions, both the clearness index (kt) and the
diffuse fraction (k) must verify the following conditions:

0 < kt < 1; ð5Þ
0 < k < 1: ð6Þ

These constraints could have been relaxed since, according to some
authors, the clouds albedo could increase the global radiation be-
yond the extraterrestrial, yielding a clearness index slightly greater
than one. However, this is an exceptional situation and it was pre-
ferred the data to verify Eqs. (5) and (6).

2.1.3. Third test
In this step, a maximum value is imposed to the horizontal glo-

bal solar irradiance and maximum and minimum values are im-
posed to the diffuse solar irradiance [32,33]. These boundary
values are calculated using the model of Page [7,25], which param-
eterizes the sky with the air mass 2 Linke turbidity factor. The
maximum value of the horizontal global solar irradiance and the
minimum value of the diffuse solar irradiance are calculated using
an air mass 2 Linke turbidity equals to 2.5 (extremely clear sky)
whereas the maximum value of the diffuse solar irradiance is cal-
culated with an air mass 2 Linke turbidity 572 times the solar alti-
tude (heavily overcast sky) expressed in radians. Therefore:

IG 6 IG;C ; ð7Þ
ID;C 6 ID 6 ID;OC ; ð8Þ

where IG,C and ID,OC are the maximum horizontal global and diffuse
solar irradiances, respectively, and ID,C is the minimum diffuse solar
irradiance estimated with the model of Page. This test has been suc-
cessfully evaluated by Younes et al. [31] in 11 locations in the
northern hemisphere from England to Japan.

2.1.4. Fourth test
This is essentially a statistical outlier analysis. The whole kt

range (from 0 to 1) was split into ten equal-size intervals. For every
interval, the mean and standard deviation of the diffuse fraction
were calculated. Values below and above twice standard devia-
tions from the mean were removed. Occasionally, this limit was
slightly modified to take into account local features of some
stations.

Fig. 2 shows the k–kt scatter plot for each quality control step
for the station located in Boulder, USA. The filtering process in this
station reduced the number of records up to 90,411 (63.3% of avail-
able daylight records). Note that test 3 rejects several outliers for
low clearness index values, albeit at the same time, it seems to also
eliminate some, a priori, good points for intermediate clearness
indices and low diffuse fractions. The amount of these points varies
from one station to another. Overall, given the high amount of data
points, the application of test 3 has been considered statistically
positive.

Finally, the shadow band correction factor procedure proposed
by Muneer and Zhang [34] was applied to the diffuse solar irradi-
ance measured in the Spanish stations. It was selected among other
available methodologies because it has been successfully tested by
López et al. [27] in Almería, close to the Spanish stations. The
authors used data measured with Kipp & Zonen CM11 pyranome-
ters, one of them equipped with a shadow band. The RMSE of the
measured and corrected data was reduced in a 10% up to 12.9%
and the bias was reduced (in module) in a 16% up to �5%. These
results can be extrapolated to the data in the Spanish stations here
used.

Table 2
Local features of the station locations: geographical situation, elevation, Koeppen’s climate index, measurement period and number of data (daylight hours). Station height is
given in meters above mean sea level.

Country Location Region Latitude Longitude Height Koeppen’s climate Period of data Number of records

Spain
Granada Spain 37.14�N 3.63�W 687 BSk 2002–06 10,181
Ciudad Real Spain 38.99�N 3.92�W 627 BSk 2002–06 6706
Albacete Spain 39.00�N 1.86�W 674 BSk 2002–06 8277

Germany
Wuerzburg Germany 49.77�N 9.97�E 275 Dfb 1981–90 20,087
Dresden Germany 51.12�N 13.68�E 246 Dfb 1981–90 24,219
Braunschweig Germany 52.30�N 10.45�E 83 Dfb 1981–90 18,323

USA
Tallahassee South-Eastern 30.38�N 84.37�W 21 Cfa 1961–90 79,910
Savannah South-Eastern 32.13�N 81.2�W 16 Cfa 1961–90 85,608
Atlanta South-Eastern 33.65�N 84.43�W 315 Cfa 1961–90 75,436
Midland South-Western 31.93�N 102.20�W 871 BSh 1961–90 68,149
Tucson South-Western 32.12�N 110.93�W 779 BWh 1961–90 82,454
San Diego South-Western 32.73�N 117.17�W 9 BSk 1961–90 91,482
Nashville North-Eastern 36.12�N 86.68�W 180 Cfa 1961–90 85,857
Pittsburgh North-Eastern 40.50�N 80.22�W 373 Dfa 1961–90 84,626
Albany North-Eastern 42.75�N 73.80�W 89 Dfb 1961–90 87,503
Boulder Western 40.02�N 105.25�W 1634 BSk 1961–90 90,411
Ely Western 39.28�N 114.85�W 1906 BWk 1961–90 79,674
Lander Western 42.82�N 108.73�W 1696 BSk 1961–90 91,086
Bethel Alaska 60.78�N 161.80�W 46 Dfc 1961–90 60,182
Talkeetna Alaska 62.30�N 150.10�W 105 Dsc 1961–90 60,803
Fairbanks Alaska 64.82�N 147.87�W 138 Dwc 1961–90 67,959
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3. Models and methodology

3.1. The proposed model

Traditionally the regression equation has related the diffuse
fraction with the clearness index, instead of relating the global so-
lar radiation with its diffuse component. The reason is that, on the
one hand, seasonal and diurnal variations of solar irradiance are
driven by well-established astronomical relationships. But, on the
other hand, the solar irradiance shows considerable stochastic
short-time variability, ruled by less predictable variables as fre-
quency and height of the clouds and their optical properties, aero-
sols, ground albedo, water vapour or atmospheric turbidity [35]. As
a consequence, the solar irradiance can be considered as the sum of
two components: one deterministic and one stochastic. The sto-
chastic component can be isolated using the clearness index and
the diffuse fraction.

Fig. 3 shows the scatter plot of k against kt for the station lo-
cated in Boulder (USA) along with three curves resulting from fit-
ting the data using a second-order polynomial (P2), a third-order
polynomial (P3) and a sigmoid (or logistic) curve (G0). The latter
is a real-valued and differentiable curve, with either a non-nega-
tive or non-positive first derivative and one inflection point. In this
case, the curve has the functional form 1� a0 exp½a1 expða2tÞ�
which is based on the so-called Gompertz curve.

Note that, for strong overcast conditions, it would be physically
expected that k ? 1 as kt ? 0. Among the curves in Fig. 3, this char-
acteristic is only partially attained by the sigmoid curve, since the
second-order polynomial takes values greater than one and the
third-order polynomial decreases for small clearness indices. On
the other hand, for clear days, the diffuse fraction is expected to
tend to small values, albeit strictly never equals to zero (note that
even a completely clear atmosphere will scatter some amount of
solar radiation). Again, among the curves in Fig. 3, this condition
is only partially fulfilled by the sigmoid curve, since the second-or-

der polynomial predicts a negative diffuse fraction and the third-
order polynomial predicts an increase. On the intermediate range
of clearness index values, the three curves behave very similarly.

A special characteristic of the sigmoid curve is that there is no
need to break the hourly diffuse fraction down into intervals as
function of the clearness index, the ‘‘classical” approach [14–
17,21]. This is a desirable feature given that the introduction of
breaking points in the regression definition may increase the local
dependency of the model.

In spite of these interesting properties, there is scarce bibliogra-
phy using the sigmoid curve in the solar radiation modelling field.
Particularly, a sigmoid curve was proposed by Boland and Ridley

Fig. 2. Quality control procedure for the station located in Boulder (USA). The rejected data points are marked with red-cross symbols and the green dots are the points that
pass the tests. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Scatter plot for the station located in Boulder (USA) (green dots) and fitting
curves using a second-order polynomial (P2), a third-order polynomial (P3) and a
sigmoid curve (G0). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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[36], who used a logistic model to fit hourly and fifteen minutes
data collected in Geelong, Australia. Recently, the same authors
[37] have published a work where they evaluate the performance
of the sigmoid model and they also study its possible applicability
for any place.

Additionally, a study has been carried out in order to elucidate
the type of sigmoid curve most suitable to regress the hourly dif-
fuse fraction and the clearness index. The solar beam suffers sev-
eral attenuation processes on its way through the atmosphere, as
Rayleigh scattering or absorption by uniformly mixed gases, water
vapour or aerosols. Assuming that all extinction processes occur
independently of each other within narrow spectral regions, the
incident beam spectral irradiance at normal incidence, Ebn,k, is then
obtained as:

Ebn;k ¼
Y

i

sikE0n;k; ð9Þ

where sik is the spectral transmittance of the ith attenuation process
and E0n,k is the extraterrestrial spectral irradiance at wavelength k at
the actual Sun–Earth distance [38].

By similarity with Eq. (9), at broadband scale, the whole atten-
uation process can be expressed as:

Ebn ¼
Y

i

siE0n; ð10Þ

where Ebn and E0n are obtained by integrating Ebn,k and E0n,k over all
the wavelength spectrum, and si is the broadband transmittance for
the ith attenuation process. Again, by similarity with the Bouguer’s
law (applied strictly only to monochromatic radiation), the broad-
band transmittance can be expressed as:

si ¼ expð�midiÞ; ð11Þ

where mi is the optical mass and di the broadband optical depth for
the ith process [39].

Additionally, and similarly to the diffuse fraction, the direct
beam fraction (Fb) is defined as the ratio of horizontal direct beam
irradiance to the horizontal global irradiance. Therefore, consider-
ing the global irradiance as the contribution of the direct and dif-
fuse components, Fb and k are related by means of the following
expression:

Fb þ k ¼ 1: ð12Þ

From the definition of the direct beam fraction, Eq. (2), and the
clearness index, Eq. (4), the direct beam fraction can be re-written
as:

Fb ¼
1
kt

Ebn

E0n
¼ 1

kt
exp �

X
i

midi

 !
: ð13Þ

Removing Fb in Eq. (12):

k ¼ 1� 1
kt

exp �
X

i

midi

 !
: ð14Þ

If we consider the Taylor series expansion of the factor k�1
t ,

k�1
t ¼

X1
n¼0

ð1� ktÞn; j1� kt j < 1; ð15Þ

and we only take the first term of the expansion (n = 0), Eq. (14) can
be written, in first approximation of the Taylor expansion, as:

k ¼ 1� exp �
X

i

midi

 !
: ð16Þ

Let consider now the atmosphere as a background Rayleigh atmo-
sphere and the superimposed effects of the rest of atmosphere con-
stituents (water vapour and aerosols, principally). Then Eq. (16) can
be given as:

k ¼ 1� exp �mRdR �
X

j

mjdj

" #
¼ 1� exp �mRdRð1þ eÞ½ �

¼ 1� expf� exp½lnðmRdRÞ þ lnð1þ eÞ�g; ð17Þ

where e is the ratio of the attenuation coefficient by atmospheric
constituents not included in the Rayleigh atmosphere to that of
the Rayleigh atmosphere. It represents the relative noise produced
over the Rayleigh atmosphere by the rest of atmospheric constitu-
ents. If the noise is assumed to be on the order of the Rayleigh back-
ground, the natural logarithm in Eq. (17) can be expanded in
polynomials such as

k ¼ 1� exp � exp const:þ e� 1
2
e2 þ 1

3
e3 � � � �

� �� �
: ð18Þ

The functional form of Eq. (18) resembles a regression equation of
the type:

KðxiÞ ¼ a� b expf� exp½FðxiÞ�g; ð19Þ

where F(xi) is a polynomial of the predictors xi. This functional form
also resembles the sigmoid Gompertz’s curve and xi represents the
predictors of the diffuse fraction k.

In the present work, we evaluate the use of different versions of
the sigmoid function in Eq. (19) to fit the hourly diffuse fraction.

3.2. Brief discussion on the number of predictors

As some authors suggest [14,19], for a given clearness index
and, especially, for intermediate values, the range of possible val-
ues of the diffuse fraction is too wide to use a regression equation
with only the clearness index as predictor. For instance, for a clear-
ness index of 0.5 and, as can be observed in Fig. 3, the interval of
diffuse fraction ranges approximately from 0.3 to 0.8. Therefore,
it would be probably useful to include other predictors as temper-
ature, humidity, sunshine fraction, cloud cover or optical air mass
[12,14,18,36]. The main problem arises because these predictors
(usually synoptic variables) are not always available. Given that
the main aim of the statistical models is to easily estimate the dif-
fuse fraction from measurements available in radiometric stations,
in this work it has been rather preferred to not include any synop-
tic predictor, making the model more general. It is then assumed a
certain reduction of the possible accuracy in the results as toll for
an easily applicable model. Consequently, to evaluate the proposed
model performance, we have only tested models that use the clear-
ness index alone or combined with the relative optical air mass.
Other authors, as Reindl et al. [14], use the sine of the solar height,
which is related to the optical air mass. In this work, we have
rather preferred to use just the later variable, because its closer
relationship to the attenuation processes in the atmosphere.

Another very interesting approach adopted by some authors
[23,24] has been the inclusion of the short-term hourly variability
of the irradiance as an estimator of the cloudiness. This approach
has proven to improve the performance of the model without in-
clude new synoptic variables at the expense of increasing the com-
plexity of the model.

3.3. The tested models

Four models recently appeared in the bibliography of diffuse
fraction regression models, two of them using the clearness index
alone and two using the optical air mass as well, together with the
‘‘classical” model of Reindl et al. [14], have been tested against
three different versions of the sigmoid-function-based model. This
totalizes eight tested models, described below.
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3.3.1. Models using only the clearness index as predictor

� Second-order polynomial, used in Clarke et al. [20], hereinafter
referred as P2:

kðktÞ ¼ a0 þ a1kt þ a2k2
t : ð20Þ

� Third-order polynomial, used in Clarke et al. [20], hereinafter
referred as P3:

kðktÞ ¼ a0 þ a1kt þ a2k2
t þ a3k3

t : ð21Þ
� The model proposed by Reindl et al. [14], hereinafter referred as

R:

kðktÞ ¼
1:020� 0:248kt ; 0:0 6 kt 6 0:3
1:450� 1:670kt; 0:3 6 kt 6 0:78:
0:147; 0:78 6 kt

8><
>: ð22Þ

� New model here proposed, based on a linear dependency with kt

in the sigmoid function, hereinafter referred as G0:
kðktÞ ¼ a0 � a1 exp½� expða2 þ a3ktÞ�: ð23Þ

3.3.2. Models using the clearness index and height-corrected optical air
mass as predictors

� New model here proposed, based on a linear dependency with kt

and m in the sigmoid function, hereinafter referred as G1:
kðkt;mÞ ¼ a0 � a1 exp½� expða2 þ a3kt þ a4mÞ�: ð24Þ

� New model here proposed, based on a quadratic dependency
with kt and m in the sigmoid function, hereinafter referred as
G2:

kðkt;mÞ ¼ a0 � a1 exp½� expða2 þ a3kt þ a4k2
t þ a5mþ a6m2Þ�:

ð25Þ
� Regression equation proposed in Clarke et al. [20], hereinafter

referred as M1:

kðkt;mÞ ¼ ða0 þ a1mÞ þ ða2 þ a3mÞkt þ ða4 þ a5mÞk2
t : ð26Þ

� Regression equation proposed in Clarke et al. [20], hereinafter
referred as M2:

kðkt;mÞ ¼ ða0 þ a1mþ a2m2Þ þ ða3 þ a4mþ a5m2Þkt

þ ða6 þ a7mþ a8m2Þk2
t : ð27Þ

3.4. Analysis of the models performance

In order to assess the performance of the different models, a
number of statistical scores have been computed.

� the squared coefficient of correlation (r2) between modelled and
measured diffuse fraction values, which represents the propor-
tion of the linear variability ‘‘explained” by the model. It has
been assessed as

r2 ¼
P

tðpi � �pÞðmi � �mÞ
� �2P

iðpi � �pÞ2
P

iðmi � �mÞ2
; ð28Þ

where pi is the ith predicted diffuse fraction data point, mi is the
ith measured diffuse fraction data point, �p is the predicted mean
value and �m is the measured mean value. It ranges from 0 to,
ideally, 1 for a perfect linear relationship.

� The mean bias error (MBE), which measures the systematic error
of the model. It evaluates the tendency of the model to under- or
over-estimate the measured values. Here, we have used the rel-
ative MBE (rMBE) to the measured mean value, obtained as
follows:

rMBE ¼ 100
P

iðpi �miÞP
im1

: ð29Þ

� The root mean squared error (RMSE), that estimates the level of
scattering of the predicted values, was also computed. Again, we
have used the relative RMSE (rRMSE) to the measured mean
value:

rRMSE ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
P

iðp� i�miÞ2
q

P
imi

: ð30Þ

� Also the skewness and the kurtosis of the error distribution have
been computed. They measure, respectively, the level of asym-
metry and the peakedness of the error distribution with respect
to a normal distribution.

� Finally, we have also computed and accuracy score (AS), to easily
compare the overall model’s performance. The accuracy score
allows elucidating the best behaved model attending to the sta-
tistics used in its definition. In this case, we have calculated the
score as:

AS ¼ 0:24
r2

i � r2
min

r2
max � r2

min

þ 0:24 1� jrMBEji � jrMBEjmin

jrMBEjmax � jrMBEjmin

� �

þ 0:24 1� rRMSEi � rRMSEmin

rRMSEmax � rRMSEmin

� �

þ 0:14 1� jSkewnessji � jSkewnessjmin

jSkewnessjmax � jSkewnessjmin

� �

þ 0:14
Kurtosisi � Kurtosismin

Kurtosismax � Kurtosismin
: ð31Þ

Note that different weights were applied to each addend, being
the sum of them equals to 1. Particularly, the same weight (0.24)
has been selected for the correlation coefficient, the rMBE and
the rRMSE, whereas a lower value (0.14) was used for the skew-
ness and the kurtosis. The rationale behind this is to assign a
greater relative importance to the firsts over the skewness and
the kurtosis. According to this definition, the maximum AS value
is 1 and the greater the score the better the model. It is worth to
remark that AS is only useful for the inter-comparison of the in-
volved set of models. It must be re-calculated if the set of models
changes or some of them is modified.
Additionally, the Akaike’s Information Criterion (AIC) has been

also provided in the local inter-comparison step of the models.
The AIC is a model selection score based on the Kullback–Leibler
information loss and closely related to the concept of entropy. It
describes the trade-off between precision and complexity of the
model. In the special case of least squares estimation with nor-
mally distributed errors and the number of experimental points
far larger than the number of predictors, AIC can be calculated as

AIC ¼ n log
P

iðpi �miÞ2

n

 !
þ 2K; ð32Þ

where n is the number of experimental points and K the number of
predictor variables [40]. According to this score, the smaller the AIC
the better the model.

4. Evaluation of the models

The evaluation process was carried out in three steps. In a first
step, the 21 stations were grouped into seven regions, namely
Spain, Germany, South-Western USA, Western USA, North-Eastern
USA, South-Eastern USA and Alaska (Table 3). These regions were
selected to contain three stations and represent different climatic
conditions. At each region, one station was used to train the mod-
els and the other two for an independent validation process. An-
other common method of validation consists on the use of a
certain portion of the experimental time series (previously re-
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moved from the original data). Given that the record length of the
Spanish stations is only 5 years long we have used the validation
procedure based on independent stations.

In a second step, seven local regression analyses (one per re-
gion) for each model (Eqs. (20), (21), (23)–(27)) were carried
out. This local treatment allowed the parameters of the models
to account for the local climatic and geographic features of the se-
ven regions under study, making the evaluation straightforward
and fair. The different models parameters are presented in Table 4
(except for model R which has fixed parameters) whereas the
models performance evaluation, in terms of the scores defined
in Eqs. (28)–(32), is presented in Table 5. Overall, it is concluded
that those models which use kt and m in the regression generally
present a slightly better fit than those that use kt alone. But,
according to the AIC, this enhancement of the model’s perfor-
mance shouldn’t be enough as to resolutely conclude that the
use of the optical mass overall improves the model. In terms of
the AIC, the increase of the model’s complexity after including
the optical mass as a second predictor is ‘‘greater” than the
enhancement of the model’s performance. However, in the case
of the optical mass, its inclusion into the regression equation does
not imply any extra input information or effort, provided that it
can be readily calculated with the same information needed to
assess the clearness index given the horizontal global solar irradi-
ance. Therefore, in spite of the AIC values, the use of the models
with kt and m as predictors would be justified. Note that, since
the data has been fitted using the least squares method, the rMBE
is zero in all the cases. The stations of Tucson and Boulder (USA)
and the station of Albacete (Spain) present the highest rRMSE val-
ues (23–25%). The rest of stations present values in the range 14–
16%. For the European stations the explained variability is over
80% while for the stations in USA is about 90%. This is probably
related to the greater length of the USA time series. Focussing
on models P2, P3 and G0, which only use the clearness index as
predictor, it can be concluded that the model G0 provides, overall,
considerable better estimates than model P2 and slightly better
than P3. However, note that the statistics presented in Table 5 re-
fers to the entire range of measured values. At this regard, Fig. 3
allows a preliminary comparison of the behaviour for low, inter-
mediate and high clearness index. It can be seen that P3 and G0
have a similar behaviour for intermediate clearness indices. On
the contrary, for clearness indices close to zero, P3 predicts a
decreasing diffuse fraction which, although might eventually be
found, is not the expected behaviour. The same applies to the
increasing diffuse fraction predicted by P3 for high clearness indi-

ces. Therefore, although the performance scores of model P3 may
be equivalent to that of model G0, the later is able to provide esti-
mates statistically more consistent in the entire range of the
clearness index. Similar conclusions can be derived from the eval-
uation of the models that use both the clearness index and the
optical mass as predictors. Likewise, the model G2, based on
the sigmoid curve, performs slightly better than the others. In
addition, model G2 has fewer parameters than M2.

Finally, in a third step, the models trained using one of the sta-
tions at each region were used to estimated the rest of the stations
(two at each region) values. In this independent validation proce-
dure, the squared correlation coefficient, the rRMSE and the rMBE
were used. At this stage, the R model was incorporated to the com-
parative evaluation process. Table 6 presents the results of this val-
idation. As could be expected, the performance of the models is
lower than for the training dataset (Table 5). Particularly, the ex-
plained variability decreases and the rRMSE and rMBE increase.
Interestingly, for Europe, the more simple models P2, P3, G0 and
R provide better estimates than the rest. Particularly, the R model
provides the best results at the Granada and Ciudad Real stations
(Spain subregion), where rRMSE values range from 34% to 40%
and rMBE values range from 10% to 17%. Additionally, the stations
of Braunschweig and Wuerzburg (Germany) present better relative
scattering (27–30%) and mean relative error (11–15%) values when
using the simpler models P2, P3, G0 and R.

For the stations located in the USA regions, the simpler models
show lower relative scattering and mean relative error than the
stations located in Europe. Contrarily to the European stations
the use of the optical mass as additional predictor does improve
the estimates. An interesting feature of these results is that the sta-
tions of the North-Eastern and South-Eastern USA regions show
considerable better results (rRMSE ranges from 22% to 26%) than
Western and South-Western regions stations (rRMSE ranges from
22% to 35%). Similar results are found in terms of the rMBE:
North-Eastern and South-Eastern regions stations range from
�8% to 4% and Western and South-Western regions stations range
from �15% to 15%. Note in Table 2 that the Western and South-
Western USA regions and the Spanish stations correspond to a B
climate in the Koeppen’s classification, that is, an arid climate. This
result might point that this kind of climate have associated a par-
ticular frequency distribution of hourly irradiance that makes dif-
ficult its characterization by simple statistics models as the
evaluated here. In Alaska, the rRMSE vary between 19% and 27%
and the rMBE between �13% and 12%.

To sum up, and regarding the simpler models, the G0 and R
models provide the best estimates. Particularly, the R model pro-
vided the worst results in San Diego and Bethel but, contrary, the
best in Fairbanks and Spain. For the rest of stations, the perfor-
mance is fair. On the other hand, the G0 model provides fair esti-
mates for all the locations, with no large differences in the
performance with respect to the other models and stations.

Regarding the more complex models, those using the clearness
index and the air mass as predictors, the best estimates are prob-
ably found using the G2 and M2 models. Overall, both models
provide similar estimates, although G2 gives slightly better re-
sults in Europe. Additionally, the behaviour for extreme clearness
indices is better in the case of the G2 model. To illustrate this
end, we have obtained the hourly diffuse irradiation residuals
for all the models for the San Diego station (Fig. 4). This station
was chosen because its rMBE is very similar for both G2 and
M2 models. As can be observed, the residuals for low and high
clearness indices are smaller using the G2 model. On the other
hand, for intermediate values, the G2 is better in the lower half
range and the M2 model in the higher range. An additional and
important advantage of the G2 model is that it has seven coeffi-
cients, while M2 needs to fit nine.

Table 3
Subregions into which the 21 stations were divided for the local evaluation study and
training and validation stations used in the study.

Region Training station Validation stations

Spain Albacete Granada
Ciudad Real

Germany (Germ.) Dresden Braunschweig
Wuerzburg

South-Western (SW) USA Tucson San Diego
Midland

South-Eastern (SE) USA Savannah Atlanta
Tallahassee

Western USA Boulder Ely
Lander

North-Eastern (NE) USA Pittsburgh Albany
Nashville

Alaska Talkeetna Bethel
Fairbanks
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5. Proposal of a global regression equation

In the previous section, the different versions of the here pro-
posed radiation model based on the sigmoid function, along with
other representative models of the current literature, were fitted
and evaluated for the seven different regions. In this section, we
present an additional analysis aiming to evaluate the potential glo-
bal applicability of these sigmoid models for any location around
the world. Particularly, the G0 model was selected among the mod-
els using only kt as predictor and the G2 model was selected among
the models using also the optical mass. Then, they were fitted
using the seven training stations detailed in Table 3. Hereinafter,
we will refer these fitted models as global models, meaning that
they have been adjusted with the training stations in USA and Eur-
ope altogether. Given the different record length of the German

and American stations datasets, only the period 1981–1990 was
used. However, the whole dataset of the Spanish stations was con-
sidered. The resultant models for Europe and USA are the
following:

k0ðktÞ ¼ 0:952� 1:041e�expð2:300�4:702ktÞ; ð33Þ

k2ðkt ;mÞ ¼ 0:944� 1:538e�expð2:808�4:759ktþ2:276k2
t þ0:125mþ0:013m2Þ: ð34Þ

Again, the AIC is greater for k2 (7.89) than for k0 (5.86). Table 7
shows the results of the validation process of these two global mod-
els. For comparison purposes, the validation results of the models
G0 and G2 fitted locally (previously showed in Table 6) are also pro-
vided. In addition, and for the sake of clearness, Fig. 5 shows the
rRMSE and rMBE of the global models validation for the seven re-
gions under study.

Table 4
Fitting coefficients of the models evaluated in this study; in parentheses the corresponding subregion.

Location Model a0 a1 a2 a3 a4 a5 a6 a7 a8

Albacete (Spain) P2 0.962 0.088 �1.482
P3 0.718 1.981 �5.741 2.903
G0 0.086 �0.880 �3.877 6.138
G1 0.096 �0.853 �4.816 7.153 0.178
G2 0.108 �0.871 �3.898 3.701 2.769 0.377 �0.038
M1 0.917 �0.020 0.384 0.132 �1.558 �0.337
M2 0.952 �0.036 �0.001 0.429 0.023 0.038 �1.735 �0.096 �0.067

Dresden (Germ.) P2 1.014 �0.753 �0.608
P3 0.913 0.324 �3.781 2.735
G0 0.140 �0.962 �1.976 4.067
G1 0.119 �0.991 �1.815 3.889 �0.065
G2 �1.618 �2.617 �4.031 7.484 �4.497 �0.034 �0.006
M1 1.044 �0.013 �0.920 0.058 �0.601 0.062
M2 0.932 0.094 �0.020 �0.077 �0.754 0.150 �1.796 1.225 �0.217

Tucson (SW USA) P2 1.404 �1.936 0.358
P3 0.877 1.688 �7.103 4.745
G0 0.988 1.073 2.298 �4.909
G1 0.970 1.037 2.948 �5.628 �0.134
G2 0.962 1.088 3.382 �5.999 0.608 �0.420 0.051
M1 1.405 �0.045 �1.797 0.217 0.428 �0.418
M2 1.270 0.097 �0.024 �0.877 �0.660 0.137 �0.515 0.430 �0.112

Savannah (SE USA) P2 1.252 �1.117 �0.442
P3 0.907 1.493 �6.321 4.066
G0 0.988 1.000 2.456 �5.172
G1 0.980 1.000 2.909 �5.541 �0.122
G2 0.973 1.000 3.352 �5.528 �0.136 �0.455 0.055
M1 1.248 �0.045 �1.126 0.310 �0.014 �0.642
M2 1.082 0.089 �0.015 �0.189 �0.416 0.070 �0.892 �0.043 �0.018

Pittsburgh (NE USA) P2 1.197 �0.779 �0.743
P3 0.770 2.572 �8.557 5.557
G0 1.001 1.000 2.450 �5.048
G1 0.994 1.000 2.936 �5.440 �0.130
G2 0.984 1.000 3.531 �6.342 0.740 �0.385 0.041
M1 1.192 �0.047 �0.737 0.302 �0.377 �0.632
M2 1.119 0.007 �0.005 �0.260 �0.035 0.025 �0.805 �0.391 0.012

Boulder (Western USA) P2 1.278 �1.447 �0.107
P3 0.812 2.142 �8.168 5.488
G0 0.967 1.024 2.473 �5.324
G1 0.961 1.048 2.847 �5.472 �0.116
G2 0.956 1.268 3.202 �6.712 2.228 �0.213 0.021
M1 1.225 �0.015 �1.122 0.096 �0.226 �0.278
M2 1.061 0.139 �0.026 �0.316 �0.655 0.127 �1.003 0.438 �0.117

Talkeetna (Alaska) P2 1.280 �1.297 �0.369
P3 0.721 3.171 �11.05 7.793
G0 0.985 0.962 2.655 �6.003
G1 0.989 1.000 2.760 �5.862 �0.048
G2 0.976 1.000 3.221 �7.145 1.280 �0.125 0.010
M1 1.401 �0.082 �2.000 0.502 0.780 �0.778
M2 1.403 �0.063 �0.007 �1.837 0.257 0.065 0.324 �0.264 �0.120

Global G0 0.952 1.041 2.300 �4.702
G2 0.944 1.538 2.808 �5.759 2.276 �0.125 0.013
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Overall, results in Table 7 show that the global models strongly
improve the estimates of the local version of the models for the
two European regions, the Alaska region and the Western and
South-Western USA regions. Particularly, for the stations located
in these regions, the most important improvements are obtained
for the rMBE: in most of the cases the rMBE values obtained using
the global models are less than one third of the locally-fitted mod-
els. Improvements in terms of the rRMSE are also important but to
a lower extend, while the explained variability remains similar.

On the other hand, for the North-Eastern and South-Eastern
USA regions the performances of the global models are lower than
the locally-fitted models. Particularly, rRMSE values slightly in-
crease and rMBE show notable increment. All the stations located
in these regions have a Cfa climate, except the Albany station. This
station has a Dfa climate, but is located close to a region of Cfa cli-
mate [30] and shares important characteristics with this type of

climate, as the existence of significant precipitation in all the sea-
sons. The different behaviour of the stations located in the North-
Eastern and South-Eastern USA regions might be related, therefore,
to the Cfa climate characteristics.

The main differential characteristic of this kind of climate com-
pared to the other analysed region climates is the nonexistence of a
dry season. This probably yields that the Cfa regions have a greater
proportion of cloudy conditions than climates with dry season. As a
consequence, for a given clearness index, the attenuation of the so-
lar radiation will be more frequently caused by clouds in compar-
ison with the rest of the stations climates. Additionally, the beam
fraction will be smaller than in the case of climates having dry sea-
sons and, thus, the diffuse fraction will be greater. Since most of
the stations used in the global fitting procedure are located in cli-
mates having a dry season, the global model fit will be biased by
the data corresponding to these stations. This, finally, results in

Table 5
Evaluation scores for the training stations of the different regression models locally-fitted. rRMSE and rMBE are given in %. The location column shows the name of the stations
used for training the model; in parentheses, the corresponding subregion. The accuracy score (AS) is a weighted mean of the five previous columns. The Akaike’s information
criterion (AIC) is a selection model score which describes the trade-off between the precision and the complexity of the model. Bold-faced figures in the AS column mean the
highest AS at each region for the models with only clearness index as predictor and clearness index and relative optical air mass as predictors.

Location Model r2 rRMSE rMBE Kurtosis Skewness AS AIC

Albacete (Spain) P2 0.8240 25.34 0.00 �0.100 �0.074 0.32 5.72
P3 0.8269 25.13 0.00 0.062 �0.090 0.43 5.74
G0 0.8279 25.06 0.00 0.102 �0.059 0.59 5.74
G1 0.8365 24.42 0.00 0.238 �0.060 0.94 7.79
G2 0.8381 24.31 0.00 0.246 �0.066 0.97 7.78
M1 0.8340 24.61 0.00 0.057 �0.090 0.66 7.76
M2 0.8344 24.59 0.00 0.062 �0.095 0.67 7.78

Dresden (Germ.) P2 0.8026 16.79 0.00 0.237 0.449 0.35 5.91
P3 0.8050 16.69 0.00 0.333 0.429 0.58 5.92
G0 0.8043 16.72 0.00 0.310 0.431 0.52 5.91
G1 0.8095 16.50 0.00 0.371 0.520 0.70 7.94
G2 0.8119 16.39 0.00 0.407 0.501 0.89 7.95
M1 0.8106 16.45 0.00 0.316 0.513 0.73 7.94
M2 0.8117 16.40 0.00 0.299 0.497 0.81 7.95

Tucson (SW USA) P2 0.8877 26.15 0.00 0.365 0.029 0.36 6.18
P3 0.8947 25.32 0.00 0.692 0.132 0.44 6.24
G0 0.8950 25.28 0.00 0.713 0.097 0.49 6.24
G1 0.9053 24.01 0.00 0.995 0.076 0.79 8.33
G2 0.9103 23.37 0.00 1.188 0.038 0.97 8.38
M1 0.8998 24.71 0.00 0.496 0.046 0.61 8.28
M2 0.9016 24.48 0.00 0.573 0.013 0.71 8.30

Savannah (SE USA) P2 0.8828 18.26 0.00 �0.288 0.315 0.24 6.06
P3 0.8871 17.92 0.00 �0.091 0.308 0.42 6.09
G0 0.8867 17.96 0.00 �0.111 0.250 0.44 6.09
G1 0.8973 17.10 0.00 �0.033 0.225 0.75 8.18
G2 0.9037 16.56 0.00 0.115 0.175 1.00 8.23
M1 0.9008 16.80 0.00 �0.124 0.278 0.76 8.21
M2 0.9026 16.65 0.00 �0.126 0.231 0.84 8.22

Pittsburgh (NE USA) P2 0.8809 15.76 0.00 �0.233 0.380 0.24 6.02
P3 0.8897 15.17 0.00 0.089 0.357 0.54 6.09
G0 0.8899 15.15 0.00 0.073 0.330 0.55 6.09
G1 0.9026 14.25 0.00 0.114 0.242 0.87 8.12
G2 0.9070 13.93 0.00 0.151 0.181 1.00 8.24
M1 0.9008 14.39 0.00 �0.041 0.300 0.73 8.18
M2 0.9018 14.31 0.00 �0.072 0.258 0.77 8.19

Boulder (Western USA) P2 0.8732 24.70 0.00 �0.073 0.203 0.31 5.92
P3 0.8850 23.53 0.00 0.410 0.254 0.52 6.01
G0 0.8857 23.45 0.00 0.457 0.230 0.56 6.01
G1 0.8973 22.24 0.00 0.853 0.203 0.88 8.11
G2 0.8996 21.98 0.00 0.927 0.211 0.92 8.13
M1 0.8885 23.17 0.00 0.224 0.167 0.67 8.03
M2 0.8893 23.08 0.00 0.228 0.156 0.71 8.04

Talkeetna (Alaska) P2 0.8864 16.03 0.00 �0.144 0.072 0.31 5.84
P3 0.8994 15.08 0.00 0.554 0.072 0.77 5.84
G0 0.8997 15.06 0.00 0.570 0.044 0.82 5.86
G1 0.9031 14.81 0.00 0.741 �0.029 0.97 7.93
G2 0.9038 14.75 0.00 0.845 �0.060 0.95 7.98
M1 0.8956 15.37 0.00 0.400 �0.116 0.57 8.08
M2 0.8963 15.32 0.00 0.418 �0.103 0.61 8.02

890 J.A. Ruiz-Arias et al. / Energy Conversion and Management 51 (2010) 881–893



Author's personal copy

Table 6
Evaluation scores for the validation stations of the different regression models locally-fitted. rRMSE and rMBE are given in %. The location column shows the name of the stations
used for validation; in parentheses, the corresponding subregion.

Location P2 P3 G0 R G1 G2 M1 M2

Granada (Spain) r2 0.612 0.634 0.640 0.642 0.648 0.649 0.622 0.623
rRMSE 35.65 34.92 34.65 34.34 34.64 34.85 36.27 36.23
rMBE 11.82 11.86 11.73 10.35 13.05 13.52 13.82 13.82

Ciudad Real (Spain) r2 0.579 0.595 0.604 0.600 0.601 0.594 0.563 0.565
rRMSE 37.6 36.67 36.18 35.87 37.34 38.13 39.82 39.80
rMBE 14.81 14.03 13.65 12.05 15.56 16.10 16.90 17.01

Braunschweig (Germ.) r2 0.685 0.676 0.676 0.674 0.680 0.679 0.688 0.689
rRMSE 26.98 27.32 27.31 28.07 27.91 28.11 27.83 27.74
rMBE �11.33 �11.22 �11.22 12.80 �12.05 �12.21 �12.47 �12.49

Wuerzburg (Germ.) r2 0.680 0.679 0.678 0.676 0.678 0.678 0.671 0.664
rRMSE 27.97 27.92 27.92 28.68 28.66 28.84 29.20 29.39
rMBE �11.79 �11.16 �11.12 13.03 �12.01 �12.07 �13.00 �13.16

San Diego (SW USA) r2 0.831 0.829 0.830 0.815 0.838 0.842 0.849 0.847
rRMSE 24.32 24.37 24.32 27.49 22.39 21.94 21.75 21.67
rMBE �3.83 �5.35 �5.01 14.62 �5.43 �5.60 �6.11 �5.18

Midland (SW USA) r2 0.840 0.836 0.836 0.852 0.836 0.839 0.844 0.840
rRMSE 27.47 27.83 27.88 24.65 25.40 24.12 24.49 24.15
rMBE �10.13 �10.67 �10.53 8.21 �7.31 �5.05 �5.44 �4.56

Atlanta (SE USA) r2 0.806 0.816 0.816 0.828 0.818 0.823 0.834 0.831
rRMSE 25.23 25.05 25.10 22.43 23.60 22.47 21.84 21.76
rMBE �7.91 �7.24 �6.48 �0.88 �5.03 �3.75 �4.41 �4.17

Tallahasse (SE USA) r2 0.803 0.800 0.796 0.812 0.799 0.802 0.819 0.815
rRMSE 22.94 23.34 23.69 22.07 22.58 22.00 21.08 21.15
rMBE �3.43 �3.69 �3.52 3.29 �1.68 �0.26 �0.05 0.35

Albany (NE USA) r2 0.835 0.830 0.830 0.844 0.837 0.834 0.843 0.843
rRMSE 22.14 22.64 22.69 21.55 21.61 21.85 21.08 21.17
rMBE 3.43 3.66 3.70 3.05 3.89 4.13 2.78 2.96

Nashville (NE USA) r2 0.861 0.848 0.850 0.866 0.860 0.860 0.884 0.884
rRMSE 20.50 21.85 21.80 20.39 19.74 19.36 17.42 17.42
rMBE �0.77 0.22 0.22 �1.04 0.88 1.78 �0.08 0.25

Ely (Western USA) r2 0.752 0.782 0.785 0.802 0.797 0.805 0.791 0.787
rRMSE 33.03 30.61 30.65 29.86 28.06 27.16 29.21 29.58
rMBE �14.50 �9.35 �10.28 12.72 �7.78 �6.73 �10.16 �10.11

Lander (Western USA) r2 0.744 0.775 0.774 0.797 0.781 0.786 0.768 0.766
rRMSE 35.41 33.93 34.06 30.34 31.82 31.14 32.57 32.67
rMBE �14.32 �12.48 �12.76 9.43 �11.04 �10.59 �11.99 �11.93

Fairbanks (Alaska) r2 0.779 0.774 0.781 0.819 0.784 0.788 0.807 0.806
rRMSE 26.75 27.29 27.10 21.07 26.19 25.78 24.71 24.81
rMBE �12.67 �12.59 �12.58 3.10 �12.13 �11.83 �11.81 �11.85

Bethel (Alaska) r2 0.838 0.849 0.851 0.809 0.854 0.854 0.839 0.841
rRMSE 19.88 19.33 19.24 24.45 18.72 18.70 19.66 19.45
rMBE �2.41 �2.03 �2.09 11.44 �1.19 �0.86 �1.10 �1.24

Fig. 4. Residuals of the hourly diffuse irradiation (%) for the station located in San Diego (USA) for the seven evaluated models. A filtering has been applied for a clearer
visualization.
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an underestimation of the values for the stations with Cfa climate
index. Particularly, the rMBE value considerable increases (at least
by a factor of two) for the North and South-Eastern region stations
when using the global models compared to the locally-fitted mod-
els. Relative RMSE values also increase, but to a lower extend,
while small changes are found for the explained variability.

Overall, it could be concluded that both the G0 and G2 global
models provide fair estimates for the entire dataset. Particularly,
model G2 provides the best estimates (Fig. 5), with rRMSE ranging
from around 20% in the Alaska region to 35% in Spain, and with
rMBE ranging from less than �5% in Spain to �12% in the eastern
USA region.

6. Summary and conclusions

In this work, we propose a new regressive model for the estima-
tion of the hourly diffuse solar irradiation under all sky conditions.

The model is based on a sigmoid function and uses the clearness
index and the relative optical mass as predictors. The model’s per-
formance was compared against other four regressive models re-
cently proposed in the bibliography and the model of Reindl
et al. [14]. For the evaluation, a set of radiation data corresponding
to 21 stations in the USA and Europe was used.

In a first part, the 21 stations were grouped into seven subre-
gions (three at each region, namely Spain, Germany, South-Wes-
tern USA, Western USA, North-Eastern USA, South-Eastern USA
and Alaska), corresponding to seven different climatic regions.
Both the new model (in three different versions) and the five mod-
els taken from the bibliography were locally-fitted and validated
using these seven sub-datasets. Particularly, one station at each re-
gion was used to train the models and the other two for an inde-
pendent validation process. Results showed that the new
proposed model offers slightly better estimates, in terms of rRMSE,
rMBE and explained variability. Particularly, the new model pro-
vides relative RMSE in the range 25–35% and the relative MBE in
the range �15% to 15%, depending on the considered region. Addi-
tionally, the new proposed model shows some important advanta-
ges compared to other evaluated models. Particularly, the logistic
behaviour of this model is able to provide more reliable estimates
(statistically speaking) for extreme values of the clearness index.
This avoids the use of piecewise regressive models, that usually
introduce extra local dependencies. Moreover, the new model
needs less parameters than most of the other analysed models.

In a second part, the potential global spatial applicability of the
new model was evaluated. To this end, the seven training stations,
one per region, were merged in a same dataset and the model was
fitted using this new set of data. The other fourteen stations were
used for an independent validation process. Results showed that
the global fitting model, based on the sigmoid function, provides
overall better estimates than the locally-fitted models. Particularly,
the new model provides relative RMSE values between 20% and
35% and a relative MBE between �5% and �12%.
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Location Climate G0 local G0
global

G2 local G2
global

Granada
(Spain)

BSk r2 0.640 0.633 0.649 0.637
rRMSE 34.65 34.33 34.85 33.10
rMBE 11.73 �3.78 13.52 �2.31

Ciudad Real
(Spain)

BSk r2 0.604 0.605 0.594 0.593
rRMSE 36.18 34.47 38.13 34.11
rMBE 13.65 �2.64 16.10 �0.99

Braunschweig
(Germ.)

Dfb r2 0.676 0.682 0.679 0.680
rRMSE 27.31 24.21 28.11 24.91
rMBE �11.22 1.37 �12.21 4.25

Wuerzburg
(Germ.)

Dfb r2 0.678 0.679 0.678 0.682
rRMSE 27.92 24.99 28.84 25.46
rMBE �11.12 0.88 �12.07 3.74

San Diego
(SW USA)

BSk r2 0.830 0.832 0.842 0.843
rRMSE 24.32 23.92 21.94 21.91
rMBE �5.01 1.04 �5.60 0.46

Midland (SW
USA)

BSh r2 0.836 0.849 0.839 0.852
rRMSE 27.88 25.76 24.12 23.96
rMBE �10.53 �4.58 �5.05 �1.72

Atlanta (SE
USA)

Cfa r2 0.816 0.808 0.823 0.823
rRMSE 25.10 27.99 22.47 25.66
rMBE �6.48 �12.51 �3.75 �10.79

Tallahassee
(SE USA)

Cfa r2 0.796 0.793 0.802 0.806
rRMSE 23.69 25.67 22.00 23.63
rMBE �3.52 �9.17 �0.26 �7.15

Albany (NE
USA)

Dfb r2 0.830 0.843 0.834 0.852
rRMSE 22.69 24.47 21.85 22.86
rMBE 3.70 �8.52 4.13 �8.47

Nashville (NE
USA)

Cfa r2 0.850 0.846 0.860 0.866
rRMSE 21.80 26.41 19.36 23.83
rMBE 0.22 �12.49 1.78 �11.90

Ely (Western
USA)

BWk r2 0.785 0.805 0.805 0.807
rRMSE 30.65 28.09 27.16 26.57
rMBE �10.28 �1.45 �6.73 1.00

Lander
(Western
USA)

BSk r2 0.774 0.795 0.786 0.796
rRMSE 34.06 30.67 31.14 29.11
rMBE �12.76 �4.04 �10.59 �2.69

Fairbanks
(Alaska)

Dwc r2 0.781 0.820 0.788 0.823
rRMSE 27.10 23.47 25.78 23.27
rMBE �12.58 �8.31 �11.83 �9.91

Bethel
(Alaska)

Dfc r2 0.851 0.840 0.854 0.845
rRMSE 19.24 19.64 18.70 19.21
rMBE �2.09 0.55 �0.86 �0.24

Fig. 5. Ranges of the relative RMSE and MBE values (for the seven analysis regions)
obtained based on the proposed global models.
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