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ntroductionI
This Conference is an activity of the Jaen Approximation Project. Jaen Approximation

Project has organized ten editions of the Ubeda Meeting on Approximation and five editions
of the Jaen Conference on Approximation. It also issues the Jaen Journal on Approximation
since 2009.

The objective of these conferences is to provide a useful and nice forum for researchers in
the subjects to meet and discuss. In this sense, the conference program has been designed to
keep joined the group during four days with a program full of scientific and social activities.

The Conference will be devoted to some significant aspects on Approximation Theory,
Computer Aided Geometric Design, Numerical Methods and the Applications of these fields
in other areas.

It features seven invited speakers (Alicia Cachafeiro Cachafeiro, Kurt Jetter, Erik Koelink,
Guillermo Tomás López Lagomasino, Paul Nevai, Paul Sablonnière, Yungho Yoon) who will
give 50 minutes plenary lectures. Researchers were invited to contribute with a talk or a
poster. We have scheduled 30 talks and a poster session.

We also provided the possibility to organizing mini-symposia on a subject of current inter-
est. The following proposal has been accepted: “Orthogonal Polynomials in Approximation
Theory” organized by Juan José Moreno-Balcázar, Teresa E. Pérez and Miguel Piñar.

This Conference is especially dedicated to these hundreds of people from more than 40
countries all over the world that have supported the journal, as editors, authors, referees
and subscribers. The Conference is held in Úbeda, what gives participants the opportunity
to visit World Heritage Sites and taste a wide culinary variety.

We hope that you all enjoy the Conference, both participants and accompanying people.
We are grateful to all those who have made this project a reality; the University of Jaén
(Vicerrectorado de Investigación and Departamento de Matemáticas), Diputación Provincial
de Jaén, Ayuntamiento de Úbeda and UNED. Here we emphasize our commitment to keep
on working to improve our university and our province.

The Organizing Committee
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D. Barrera, M. J. Ibáñez, A. M. Roldán, J. B. Roldán and R. Yáñez: Discrete
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Some topics in Hermite interpolation on the unit circle∗

Alicia Cachafeiro

Abstract

The aim of this talk is to present some results and ideas related to Hermite interpolation
on the unit circle with equally spaced nodal systems. The main topics covered in this
overview are the obtention of explicit expressions for the interpolation polynomials, the
study of the rate of convergence of the Hermite-Fejér interpolants and other related topics
such as a Brutman type theorem.

Keywords: Hermite interpolation, barycentric expressions, rate of convergence.
AMS Classification: 41A05, 65D05, 42A15, 33E20.
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The Gasca-Maeztu conjecture reconsidered

Kurt Jetter

Abstract

The Gasca-Maeztu conjecture deals with bivariate polynomial interpolation on an n-
poised set X ⊂ R2 of nodes, assuming that each fundamental polynomial factors completely
into n linear factors (or lines). It states that, then, at least n + 1 nodes from X must be
collinear. Surprisingly, although the conjecture now stands for more than 30 years, c.f. [2],
it has been verified up to now only for n ≤ 5.

While the conjecture itself can be formulated as a combinatorial problem refering to a
special geometry of incidence structures, the proofs for the non-trivial cases n = 4 and n = 5
also involve results from Algebraic Geometry. The talk will aim at giving an introduction to
some of these methods.

There are various equivalent forms of the conjecture, if we ask the conjecture to hold for
all k ≤ n, for given n ∈ N. The most striking ones are the existence of three non-concurrent
lines containing n + 1 nodes each and 3n nodes altogether, a result due to Carnicer and
Gasca [1], and the statement that for each node A ∈ X , the remaining nodes are distributed
in a Berzolari-Radon type way. This follows from our treatment in [3] of characterizing
the geometry of interpolation lattices – satisfying the assumptions in the Gasca-Maeztu
conjecture – by so-called maximal distribution sequences: the latter must be of type (n +
1, n, . . . , 2), for each A ∈ X . Both these statements give the hope that, eventually, an
inductive proof might be available.

Crucial in our proof of the case n = 5 is the close relation of the number of nodes on a line,
and the number of uses of that line as a factor in the fundamental polynomials. Although
some general results are available, they are still much too weak in order to have the hope of
a quick answer to the problem.

The talk is based on joint work with Hakop Hakopian and Georg Zimmermann.

Keywords: bivariate polynomial interpolation, geometric condition, Chung-Yao natural
lattice, Berzolari-Radon type set, maximal line, maximal distribution sequence.
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Matrix-valued orthogonal polynomials

Erik Koelink, Ana M. de los Ŕıos and Pablo Román

Abstract

Matrix-valued orthogonal polynomials go back to the pioneering work of M.G. Krein
around 1950. These are polynomials taking their values in the algebra of N × N -matrices
satisfying a suitable matrix-valued orthogonality relation. Many properties of matrix-valued
orthogonal polynomials are along the lines of corresponding well-known properties of the
scalar-valued orthogonal polynomials. Classically, the orthogonal polynomials of Jacobi, La-
guerre and Hermite are eigenfunctions to a second order differential equation, and properties
of these polynomials can be obtained from this result. For the matrix-valued case it is (in
general) rather difficult to have well-understood families of matrix-valued orthogonal poly-
nomials for arbitrary size N . In this lecture we concentrate on an explicit family of matrix-
valued orthogonal polynomials for arbitrary size which can be considered as a matrix-valued
analogue of Gegenbauer (or ultraspherical) polynomials. In particular, we discuss these
matrix-valued polynomials from the perspective of eigenfunctions of two matrix-valued dif-
ferential operators.

Keywords: matrix-valued orthogonal polynomials, Gegenbauer polynomials.
AMS Classification: 33C45, 34L10, 35C11.
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Convergence of type I Hermite-Padé approximants of
systems of meromorphic functions∗

G. López Lagomasino and S. Medina Peralta

Abstract

We present new results on the convergence of diagonal sequences of type I Hermite-Padé
approximation for systems of meromorphic functions obtained through a vector rational
modification with real coefficients of a Nikishisn system of functions. We show that the
approximants not only recover the functions but also locate its poles taking account of their
order.

Keywords: Hermite-Padé approximation, multiple orthogonal polynomials.
AMS Classification: 30E10, 41A21, 42C05.
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The “(xn)” sequence

Paul Nevai

Abstract

I will discuss (generalizations of) “(xn)” sequence, or, in other words, the recurrence coe-
fficients for the orthogonal polynomials associated with the weight function exp(−c/4x4 −
K/2x2) on the real line that have some fascinating properties that have long thrilled and
puzzled me. In certain fancy circles the equation describing this sequence is called Discrete
Painlevé Equation #1 (googleable) but in our down-to-earth universe it is just a non-linear
second order difference equation with mystic but irresistible beauty and attraction.
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Recent progress on quasi-interpolants derived from some
classical linear approximation operators

Paul Sablonnière

Abstract

In this survey paper are presented some properties and applications of new quasi-interpolants
derived from the representations of Bernstein, Baskakov, Szász-Mirakyan, Weierstrass and
De la Vallée Poussin operators as linear differential operators on algebraic or trigonometric
polynomials. In particular, we study their infinite norms, their convergence properties and
their ability to generating useful quadrature or differentiation rules. This method also works
for other families of linear approximation operators.
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Centre de Mathématiques, INSA de Rennes,
20 avenue des Buttes de Coësmes, CS 70839,
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Convergence of multivariate interpolation by
increasingly flat translation kernels with finite

smoothness

Yeon Ju Lee, Charles A. Micchelli and Jungho Yoon

Abstract

This study is concerned with the behavior of multivariate interpolation by finitely smooth
kernel function as the kernel is increasingly flat. First, interpolation by radial basis function
(RBF) is considered. We show that when the basis function is scaled to be increasingly flat,
the corresponding interpolants converge to a polyharmonic spline interpolant for a larger class
of RBFs including the Sobolev splines (of arbitrary order) as well as the Wendland compactly
supported RBFs. Second, we improve upon some observations made in recent papers on the
subject of increasingly flat interpolation. We shall establish that the corresponding Lagrange
functions converges both for a finite set of functions (collocation matrix) and also for kernels
(Fredholm matrix). In our analysis, we use a finite Maclaurin expansion of a multivariate
function with remainder and some additional matrix theoretic facts.

Keywords: multivariate kernel interpolation, radial basis function, polyharmonic spline,
collocation matrix.
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Approximating functions of bounded variation by
positive linear operators∗

José A. Adell, J. Bustamante and J.M. Quesada

Abstract

Let (Ln, n ≥ 1) be a sequence of positive linear operators allowing for a probabilistic
representation of the form

Lnf(x) = Ef

(

x+
Zn(x)√

n

)

, x ∈ I, n ≥ 1,

where I is a real interval, f : I → R is a measurable function and Zn(x) is an appropriate
random variable. Denote by Bx(I) the set of bounded measurable functions having right
and left limits at x.

The aim of this talk is to give explicit estimates both for

Lnf(x)−
f(x+) + f(x−)

2
and Lnφ(x)− φ(x),

for any f ∈ Bx(I) and for any absolutely continuous function φ with Radon-Nikodym deriva-
tive φ′ ∈ Bx(I), respectively. This setting includes the case when f or φ′ have bounded vari-
ation on I, respectively. Such estimates are obtained under the following two assumptions:
the tail probabilities of Zn(x) are exponentially bounded, and

lim
n→∞

P (Zn(x) > 0) = lim
n→∞

P (Zn(x) < 0) =
1

2
.

These (nonessential) assumptions have been chosen because the operators usually considered
fulfil them. In our approach, a crucial tool to obtain explicit upper bounds is the notion of
median of a random variable.

The main results are applied to the Bernstein polynomials, as well as to certain convo-
lution operators of exponential type which show that our estimates cannot be essentially
improved.

Keywords: bounded variation, positive linear operator, exponential tail, median, Bern-
stein polynomials.
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Chebyshev blossoming and Gaussian quadrature rules∗

Rachid Ait-Haddou

Abstract

In this talk we give a characterization of the nodes and weights of Gaussian quadrature
rules in extended Chebyshev spaces [2] in terms of their associated Chebyshev blossoms[3].
Applications to Gaussian quadrature rules in Muntz spaces [1] will be discussed.

Keywords: Chebyshev blossoming, Gaussian quadrature rules, Muntz spaces, Schur
functions.
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Rates of convergence for a Kantorovich-Stancu
generalization of Szasz type operators

Rabia Aktaş, Bayram Çekim and Fatma Taşdelen Yeşildal

Abstract

In the present paper, we study the rates of convergence for Kantorovich-Stancu type
generalization of Szasz operators including some known polynomials. The special cases of
these type operators are indicated and their approximation properties are also discussed.

Keywords: Szasz operator, modulus of continuity, rate of convergence, Brenke type
polynomials, Gould-Hopper polynomials, voronovskaya type theorem.

AMS Classification: 41A25, 41A36.
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On quasi–orthogonal polynomials in several variables

M. Alfaro, A. Peña, T.E. Pérez and M.L. Rezola

Abstract

Let {Pn}n≥0 and {Qn}n≥0 be two monic polynomial systems in several variables. When-
ever both polynomial systems are orthogonal, the existence of a linear structure relation

Qn = Pn +MnPn−1, n ≥ 1,

with Mn constant matrices, is characterized in terms of the orthogonality moment function-
als. Moreover, assuming that one of the polynomial systems is orthogonal, we study when
the other one is also orthogonal. Some illustrative examples are presented.

Keywords: multivariate orthogonal polynomials, three term relations, moment functionals.
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On approximation schemes and compactness

A. G. Aksoy and J. M. Almira

Abstract

One of the basic notions in functional analysis is compactness. Its utility has become
of fundamental importance after the appearance of Arzelà-Ascoli’s Theorem [13], [14] espe-
cially pointing its use for the proof of existence results when investigating the solutions of
differential equations. Indeed, a key step for the proof of convergence in many algorithms
is precisely to show that a certain set is compact, and many theorems have been produced
to characterize compactness of subsets of the numerous function spaces and operator spaces
that appear in functional analysis. The compactness of operators was also a main ingredient
for the study of the solutions of integral equations, and was indeed introduced by Hilbert in
his studies of the equations of Mathematical Physics. In particular, Hilbert and his student
Schmidth proved a very nice decomposition formula for all self-adjoint compact operator
T : H → H , where H is any separable Hilbert space: the spectral decomposition theorem.
This theory was soon investigated and amplified to a beautiful set of results which we call
nowadays Riesz theory (or Riesz-Schauder Theory) and is devoted to the study of opera-
tors S : X → X (where X denotes any complex Banach space) that can be expressed as
S = λIX − T with λ 6= 0 (an scalar) and T : X → X , a compact operator. In such study,
the spectral properties of the operator T are essential and, in connection with these proper-
ties, it was soon discovered that some entropy and approximation quantities were of great
importance (see, e.g., [21] for a detailed study of this connection). Compactness has also
been a fundamental concept for the development of other parts of Mathematical Analysis,
such as Fixed Point Theory or Approximation Theory. Concretely, Brouwer’s fixed point
theorem [18] asserts that every compact convex set K in Rn is a fixed point space, that is,
if f : K → K is continuous, then f(x) = x for some x ∈ K (see [38, p. 25] for a nice easy
demonstration). On the other hand, Schauder’s fixed point theorem [51], which has numer-
ous applications in Mathematical Analysis, asserts that every convex set in a normed linear
space is a fixed point space for compact maps (see also [16]). Among the results equivalent
to Brouwer’s fixed point theorem, the theorem of Knaster, Kuratowski and Mazurkiewicz
(in short, KKM) [36] occupies a special place. Ky Fan, using KKM maps, was able to prove
a best approximation theorem [29]. Later on, this concept was generalized by Khamsi to
metric space setting by demonstrating a result which can be seen as an extension of Brouwer
and Schauder’s fixed point theorems (see [35]). Finally, just to include in this section some
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results related to Approximation Theory, we would like to stand up that compactness of
natural embeddings Y →֒ X is, in fact, the main reason because, in many classical contexts,
we can prove that approximation errors (with respect to arbitrary approximation schemes)
and Fourier coefficients of functions that belong to the space Y , decay to zero with a certain
prescribed behavior. This was recently proved by Almira and Oikhberg [12] and by Almira
[8].

In this address, we survey some results about the characterization of compactness in
which the concept of approximation scheme has had a role. Concretely, we present several
results that were proved by the second author, jointly with Luther, a decade ago, when these
authors were working on a very general theory of approximation spaces [9], [10] (see also
[31]) and we also introduce and show the basic properties of a new concept of compactness,
which was studied by the first author in the eighties [1], [2], [3], [6], by using a generalized
concept of approximation scheme and its associated Kolmogorov numbers, which generalizes
the classical concept of compactness..
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[37] A. N. Kolmogorov, Über Kompaktheit der Funktionenmengen bei der Konvergenz
im Mittel, Nachr. Ges. Wiss. Göttingen 9 (1931), 6063. English translation: On
the compactness of sets of functions in the case of convergence in the mean, in V. M.
Tikhomirov (ed.), Selected Works of A. N. Kolmogorov, Vol. I, Kluwer, Dordrecht,
1991, 147-150.

[38] J. Matousek, Using the Borsuk-Ulam Theorem, UniversityText, Springer, 2003.

[39] T. Oikhberg, Rate of Decay of s-Numbers, J. Approx. Theory 163 (2011) 311-327.

[40] J. Peetre and G. Sparr, Interpolation of normed abelian groups, Annali di Matem-
atica Pura ed Applicata 12 (1972)



Approximation schemes and compactness 27

[41] A. Pietsch, Approximation spaces, Journal of Approximation Theory 32 (1981)
115–134.

[42] A. Pietsch, Operator ideals, North-Holland, Amsterdam, 1980.

[43] A. Pietsch, Bad Properties of the Bernstein Numbers, Studia Math. 184 (2008)
263-269.

[44] A. Plichko, Rate of Decay of the Bernstein Numbers, Journal of Mathematical
Physics, Analysis, Geometry. 9 (1) (2013) 59-72.

[45] G. Pisier, Counterexamples to a Conjecture of Grothendieck, Acta Math. 151 (1983)
181-208.

[46] E. Pustylnik, Ultrasymmetric sequence spaces in approximation theory, Collectanea
Mathematica 57 (3) (2006) 257-277.

[47] E. Pustylnik, A new class of approximation spaces, Rend. Circ. Mat. Palermo Ser.
II, Suppl., v. 76 (2005), 517-532.

[48] S. Rolewicz, Metric linear spaces, 2th Ed. Mathematics and its applications, East
European Series, Kluwer Acad. Publ., 1985.

[49] W. Rudin, Functonal Analysis (2 Edition), Mc-Graw Hill, Inc., 1991.

[50] H. S. Shapiro, Some negative theorems of Approximation Theory, Michigan Math.
J. 11 (1964) 211–217.

[51] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), 171-
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[55] N. Tiţa, Equivalent quasi-norms on some operator ideals, Annal. Univ. Craiova 28
(2001) 16-23.
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On the rate of convergence of modified Baskakov type
operators

Sevilay Kırcı Serenbay and Didem Aydın Arı

Abstract

In this paper, we estimate the rate of convergence of modified Baskakov type operators
with derivatives of bounded variation.

Keywords: Baskakov type operators, bounded variation, total variation, rate of conver-
gence. AMS Classification: 41A35, 41A36.
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On differential quadrature∗

D. Barrera, P. González, F. Ibáñez and M. J. Ibáñez

Abstract

The Differential Quadrature Method (DQM) is a numerical discretization technique for
the approximation of derivatives by means of weighted sums of function values. It was intro-
duced by Bellman and coworkers in the early 1970’s, and it has been extensively employed to
approximate spatial partial derivatives (cf. [1], [7] and references quoted therein). The classi-
cal DQM is polynomial-based, but some spline based DQMs have been proposed to overcome
the limitation concerning the number of grid points involved. Given a B-spline (cf. [2], [8]),
a cardinal lagrangian o hermitian spline with a compactly supported fundamental function
is defined, from which the approximation of the derivatives is obtained. The construction
of these spline interpolants depends strongly on the degree of the B-spline (see for instance
[3] and [9]). In this work we present a DQM based on interpolation and quasi-interpolation.
Firstly, we consider the construction of compactly supported cardinal functions L based on
B-splines such that

L (j) = δj,0, j ∈ Z,

δ being the Kronecker sequence (cf. [6]). Then, we revise some spline discrete quasi-
interpolants defined from the same B-splines (cf. e.g. [2], [8] and references quoted therein).
Finally, both the interpolants and the quasi-interpolants are used to define boolean sum
based interpolants (cf. [4]) having compactly supported fundamental functions again, and
the maximal order of approximation. The quintic case is described (cf. [5]) and compared
with the results obtained in [9].

Keywords: differential quadrature, B-spline, interpolation, discrete quasi-interpolation,
boolean sum.

AMS Classification: 41A05, 41A15, 65D05, 65D07.

Bibliography

[1]C. W. Bert and M. Malik, Differential quadrature method in computational mechan-
ics: a review, Appl. Rev. 49 (1996) 1–27.

∗University of Granada and Junta de Andalućıa
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Department of Applied Mathematics,
University of Granada, 18071-Granada, Spain.
mibanez@ugr.es



V Jaen Conference on Approximation Theory

Úbeda, Jaén, Spain, June 23rd-26th, 2014

Durrmeyer type operators with respect to arbitrary
measure∗

Elena E. Berdysheva

Abstract

We consider Bernstein-Durrmeyer operators on a d-dimensional simplex as well as Szász-
Mirakjan-Durrmeyer and Baskakov-Durrmeyer operators on the half-line [0,∞) with respect
to an arbitrary measure. A motivation for this generalization comes from learning theory.
The construction, given below for simplicity in the one-dimensional case, is the following.

Let c = −1, 0, or 1. The cases c = −1, c = 0, and c = 1 correspond to the
one-dimensional Bernstein-Durrmeyer operator, Szász-Mirakjan-Durrmeyer operator, and
Baskakov-Durrmeyer operator, respectively. Let I−1 = [0, 1], and I0 = I1 = [0,∞). The
basis functions are defined on Ic by the formulae

p
[c]
n,k(x) =











(

n
k

)

xk (1− x)n−k, c = −1,
(nx)k

k!
e−nx, c = 0,

(−1)k
(

−n
k

)

xk (1 + x)−n−k, c = 1.

Let ρ be a non-negative locally bounded Borel measure on Ic. The Durrmeyer type operators
with respect to measure ρ are defined for functions f on Ic by

M[c]
n,ρ f :=

∞
∑

k=0

∫

Ic
f(t) p

[c]
n,k(t) dρ(t)

∫

Ic
p
[c]
n,k(t) dρ(t)

p
[c]
n,k

under some natural conditions on ρ and f .
In the talk, we concentrate on the convergence of the operators. We prove pointwise

convergence at each point x ∈ supp ρ of continuity of f . Moreover, the convergence is
uniform in every compact set A ⊂ (supp)◦ when f is continuous in A. Further on, we
prove convergence in the weighted Lp-spaces, 1 ≤ p < ∞, and give estimates for the rate of
Lp-convergence.

Parts of the talk are based on joint work with Kurt Jetter, Bing-Zheng Li, and Eman Al
Aidarous.
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A hypercomplex approach to orthogonal polynomials in
arbitrary dimension∗

I. Cação, M.I. Falcão and H. Malonek

Abstract

The aim of the talk is to provide an alternative approach to the construction of orthog-
onal polynomials in arbitrary dimension by using hypercomplex function theory techniques.
Hypercomplex function theory (or Clifford analysis) can be viewed as a generalization to
higher dimensions of the theory of holomorphic functions of one complex variable by using
Clifford algebras. In this framework the analogue of holomorphic functions is obtained as
null-solutions to a generalized Cauchy-Riemann system and are usually called monogenic.

We construct orthogonal monogenic polynomials that are multiples of their (hypercom-
plex) derivatives, i.e., that form Appell sequences. The different representations obtained for
these polynomials lead to some new features, namely multiplicative and inductive processes
to obtain orthogonal bases of the space of monogenic polynomials of some fixed (homoge-
neous) degree.

Keywords: Clifford analysis, orthogonal bases, generalized Appell polynomials.
AMS Classification: 30G35, 35C11, 32A05.
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Relation between Jackson’s and Hahn’s quantum
operators∗

José Luis Cardoso

Abstract

For 0 < q < 1, ω ≥ 0, ω0 := ω/(1− q), and I a set of real numbers, the Hahn operator
acting on a function f : I → R(C) is defined by

Dq,ω[f ](x) :=
f
(

qx+ ω
)

− f(x)

(q − 1)x+ ω
, x ∈ I \ {ω0} .

Its inverse operator is given in terms of the so-called Jackson-Thomae (q, ω)−integral, also
called Jackson-Nörlund (q, ω)−integral. For ω = 0 one obtains the Jackson’s q−operator, Dq,
whose inverse operator is given in terms of the so-called Jackson q−integral. By establishing
links between Dq,ω and Dq, as well as between the q and the (q, ω) integrals, we show how
to obtain the properties of Dq,ω and the (q, ω)−integral from the corresponding ones fulfilled
by Dq and the q−integral. We also consider (q, ω)−analogues of the Lebesgue spaces.

These results were motivated by our previous research works on basic Fourier series.

Acknowledgement: The results presented in this talk were obtained in collaboration with
José Carlos Petronilho.

Keywords: Jackson q−integral, q−analogues, Jackson-Nörlund (q, ω)−integral,
(q, ω)−Lebesgue spaces.
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Rational positive quadrature formulas on the interval
and on the unit circle∗

Ruymán Cruz Barroso

Abstract

Let µ̊ be a positive measure on the unit circle T := {z ∈ C : |z| = 1}. In this talk
we consider positive (with positive weights) rational interpolatory quadrature formulas on
the unit circle (see [1]-[3]) that approximate integrals of the form Iµ̊(f) =

∫

T
f(z)dµ(z).

These rules, that are exact in spaces of rational functions, may have some of the nodes fixed
in advance. The existence and some of its computational aspects will be discussed along
with a connection with positive rational interpolatory quadrature formulas with prescribed
nodes on the interval, that approximate integrals of the form Iµ(g) =

∫ 1

−1
g(x)dµ(x), where

the measures µ and µ̊ are related by the Joukowsky transformation. In addition, recent
results on the computation of para-orthogonal rational functions via a three-term recurrence
relation will be studied (see [4]).

Keywords: Rational Gaussian quadrature formulas, Rational Szegő-type quadrature
formulas, orthogonal rational functions, para-orthogonal rational functions.

AMS Classification: 42C05, 65D32.
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Rate of convergence of generalized Favard-Szàsz type
operators for functions of bounded variation

Özge Dalmanoğlu, İbrahim Büyükyazici and Ertan İbikli

Abstract

In this paper, we consider the modified Favard-Szàsz operators introduced by N. İspir
and Ç. Atakut [4]. We give an estimate for the rate of convergence for functions of bounded
variation on [0,∞).

Keywords: rate of convergence, bounded variation, Favard-Szàsz type operators.
AMS Classification: 41A25, 41A36.
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Christoffel functions on Jordan curves with respect to
measures with jump singularity

Tivadar Danka

Abstract

Let µ be a finite Borel measure on the complex plane with compact support. The n-th
Christoffel function is defined by

λn(µ, z) = inf
deg(Pn)≤n

∫ |Pn(w)|2
|Pn(z)|2

dµ(w),

where the infimum is taken for all polynomials Pn such that deg(Pn) ≤ n. In this talk we
study the asymptotic behaviour of Christoffel functions for a class of measures. Assume that
µ belongs to the Reg class and its support is some Jordan curve γ. Let z0 ∈ γ and assume
µ is absolutely continuous in a neighborhood of z0 with respect to the arc length measure
sJ . We show that if dµ(z) = w(z)dsJ(z), where w has a jump singularity at z0 with left and
right limits A and B, then we have

lim
n→∞

nλn(z0, µ) =
dsJ(z0)

dωγ

A−B

logA− logB
,

where ωγ denotes the equillibrium measure with respect to γ.

Keywords: Christoffel function, asymptotic behavior, Jordan curve, equillibrium mea-
sure, Green function.
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Sobolev–type orthogonal polynomials on the unit ball

Antonia M. Delgado, Teresa E. Pérez and Miguel A. Piñar

Abstract

In this presentation, we consider the Sobolev–type inner product of the form

(p, q)S = (p, q)µ + λ
N
∑

k=0

∂p(sk)

∂n

∂q(sk)

∂n
, λ > 0,

(·, ·)µ is the usual inner product on the unit ball Bd, and ∂
∂n

represents the normal derivative
on the sphere Sd−1. Then, multivariate orthogonal polynomials of Sobolev–type and the
kernel functions associated with this Sobolev–type inner product are studied. More explicitly,
we express them in terms of those corresponding with the original inner product. These
results are applied to obtain the asymptotics of the Christoffel functions. Finally, the special
case of the Sobolevtype modification of the bivariate classical measure on the unit disk
obtained by adding the outward normal derivatives on a finite set of uniformly distributed
points on the unit circle is presented.

Keywords: multivariate orthogonal polynomials, Sobolev inner products, Christoffel
functions, asymptotics.
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Explicit expressions for generalized Hermite polynomials
using Chebyshev nodal systems∗

Jaime Dı́az, Eĺıas Berriochoa and Alicia Cachafeiro

Abstract

This piece of work is devoted to obtain formulae for Hermite (or Hermite type) inter-
polation problems on the bounded interval. The interpolation conditions gather the values
of the polynomial and its first two derivatives at the nodal points and the nodal system is
constituted by the Chebyshev or the extended Chebyshev points.

The basic idea is to translate each problem to a Hermite problem in the Laurent poly-
nomial space using Joukowsky transformation. We can solve the problem in the space of
Laurent polynomials by giving a explicit solution in terms of the natural basis of Laurent
polynomials (see [2]). All the coefficients of the auxiliar problem can be computed in an easy
and efficient way by means of the Fast Fourier Transform (FFT). Finally the solution of the
original problem is obtained using Joukowsky transformation and identifying the coefficients
properly; the final solution is so given in explicit form using the Chebyshev polynomials of
first kind ({Tn(x)}) and using only FFT of sines and cosines.

Keywords: Hermite interpolation, Chebyshev points, extended Chebyshev points, Chebyshev-
Lobatto nodes.
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The electrostatic properties of zeros of exceptional
Laguerre and Jacobi polynomials and stable

interpolation∗

Á. P. Horváth

Abstract

At first X1-Jacobi and X1-Laguerre polynomials, as exceptional orthogonal polynomial
families were introduced by D. Gómez-Ullate, N. Kamran and R. Milson. The relationship
between exceptional orthogonal polynomials and the Darboux transform is observed by C.
Quesne. Higher-codimensional families were introduced by S. Odake and R. Sasaki. The
properties of zeros of exceptional polynomials were investigated by D. Gómez-Ullate, F.
Marcellán, R. Milson, D. Dimitrov and Yen Chi Lun.

We will examine the electrostatic properties of exceptional and regular zeros of Xm-
Laguerre and Xm-Jacobi polynomials. Since there is a close connection between the elec-
trostatic properties of the zeros and the stability of interpolation on the system of zeros, we
can deduce some Egerváry-Turán type results as well.

Keywords: exceptional polynomials, zeros, minimal energy.
AMS Classification: 33E30,41A05.
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Discrete orthogonal polynomials and parameter
extraction in MOSFETs transitors∗

D. Barrera, M. J. Ibáñez, A. M. Roldán, J. B. Roldán and R. Yáñez

Abstract

Transistors, and in particular MOSFETs (Metal Oxide Semiconductor Field Effect Tran-
sistors), are the most used basic building blocks of integrated circuits (ICs) [1]. The com-
plexity of current chips makes essential their accurate characterization to use them for circuit
design purposes. For each generation of transistors the main electrical features have to be
modeled in order to reproduce them as a function of the voltages differences applied between
their terminals. The models consist of a set of analytical equations and a set of parameters to
include in those equations. A different set of parameters is used for each fabrication technol-
ogy. These models are used in TCAD circuit simulation tools and also for hand-calculations
used at the first stages of circuit design.

The extraction of the parameters of new technologies is essential since the capacities of
circuit designers are dependant on the accuracy of model parameters that in many cases are
linked to important physical effects.

Each parameter is obtained in a different way. However, few of them share some features
in common, at least from the numerical viewpoint. In this respect, several parameters are
obtained by means of extrapolation methods (for example threshold voltage calculation [1]),
linear regression (determination of the body factor [1]), slope calculations (extraction of the
DIBL parameter[1]), etc. In all these procedures, the determination of portions of curves
that can be approximated by a straight line is crucial. In this work we just deal with this
issue trying to shed light by means of advanced numerical techniques.

We have developed a method to determine the number of straight line portions contained
in a curve in an automatic manner. The algorithm developed, based on discrete orthogonal
polynomials, can be used for parameter extraction purposes. It consist on the isolation of
straight line portions in experimental or simulated data and the determination of the slope
of those curve sections to calculate one or more parameters of a compact model.

Keywords: discrete orthogonal polynomials, straight line portion, MOSFET.
AMS Classification: 33C45, 42C10, 65D10, 82D37.
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Inequalities for polynomials and rational functions
normalized on an interval and circular arcs∗

Sergei Kalmykov

Abstract

In this talk new covering and distortion theorems, and coefficient estimates for rational
functions and algebraic polynomials with restrictions on circular arcs and on the the interval
[−1, 1] will be discussed.

Some of these theorems are consequences of the majorization principle [1] applied to an
appropriate meromorphic function and dependent on Greenâs functions and inner radii of
the domains complementary to circular arcs. Other results were proved using facts from the
theory of univalent functions. In particular, the following theorem is true [2].

Theorem 1. For a complex polynomial P (z) = cnz
n + ... + ckz

k, n − k ≥ 3, cnck 6= 0 the
following inequality

4|cnck| sin2(n−k)(α/2)

M2 −m2

(

1 +
1

sin(α/2)

∣

∣

∣

∣

(

cn−1

2cn
+

ck+1

2ck

)

+ (n− k) cos2(α/2)

∣

∣

∣

∣

)

≤ 1 (1)

holds, where

m = min
−α<ϕ<α

|P (eiϕ)|, M = max
−α<ϕ<α

|P (eiϕ)|.

Equality in (1) is attained for

P (z) =















n/2
∏

k=1

(z2 − 2akz + 1), for even n,

(z − 1)
(n−1)/2
∏

k=1

(z2 − 2akz + 1), for odd n,

where ak = cos2 α
2
− sin2 α

2
cos π(2k−1)

n
.
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All mentioned statements are sharp and supplement recent results of Lukashov, Tyske-
vich, Maergoiz, Rybakova, Olesov, Dubinin and the speaker, as well.

Also we discuss some extremal properties of analogues for Chebyshev and Videnskii
polynomials in rational spaces (for some details see [3, p. 139-145] and [4]).

Keywords: inequalities for polynomials and rational functions, Chebyshev polynomials,
univalent functions, majorization principles.
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Dual bases in subspaces

Scott N. Kersey

Abstract In this paper we study dual bases functions in subspaces. These are bases
which are dual to subsets of functionals from larger linear spaces. Our goal is construct
and derive properties of certain bases obtained from the construction, with primary focus on
polynomial spaces in B-form. When they exist, our bases are always affine (not convex), and
we define a symmetric configuration that converges to Lagrange polynomial bases. Because
of affineness of our bases and linear polynomial reproduction, we are able to derive certain
approximation theoretic results involving quasi-interpolation and a Bernstein-type operator.
We also apply our construction to splines and multivariate polynomials. In particular, we
give characterizations in the multivariate setting in B-form for existence of dual bases.

Keywords: dual bases functions, polynomials, splines.
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Bibliography

[1] S. Kersey, Dual basis in Subspaces of Inner Product Spaces Applied Mathematics and
Computation 219(19) (2013) 10012–10024.

[2] S. Kersey, Dual basis Functions in Subspaces, Manuscript (2014).

[3] S. Kersey, Dual basis Functions in Subspacs of Multivariate Polynomial Spaces, Manuscript
(2014).

Scott Kersey,
Department of Mathematical Sciences,
Georgia Southern University, USA.
scott.kersey@gmail.com

53



V Jaen Conference on Approximation Theory

Úbeda, Jaén, Spain, June 23rd-26th, 2014

About efficiency of approximation by ridge functions

Vitaly E. Maiorov

Abstract

The function of the form r(a · x) on Rd is calling ridge function with the direction a. We
consider the approximation properties of variety R(A) = {

∑

a∈A f(a · x)} formed by linear
combination of ridge functions with directions from a finite set A.

The wide classes of functions (for example, harmonic functions) may be effectively ap-
proximated by R(A) with adaptive choice of the direction set A comparatively to a fixed
choice.

We show the connection between approximation by ridge functions and by trigonometric
polynomials with floating harmonics. These results are apply to effective approximation of
wide classes of smoothness functions by R(A) with adaptive choice of the set A.

Vitaly E. Maiorov,
Alfréd Rényi Institute of Mathematics,
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Asymptotics of a family of varying discrete Sobolev
orthogonal polynomials∗

Juan F. Mañas-Mañas, Francisco Marcellán and Juan J. Moreno-Balcázar

Abstract

In this talk we consider the following inner product involving the Laguerre weight,

(f, g)n =
1

Γ(α + 1)

∫ ∞

0

f(x)g(x)xαe−xdx+Mnf
(j)(0)g(j)(0), α > −1, (1)

where {Mn}n is a sequence of nonnegative numbers satisfying Mn ∼ Mnβ with M > 0 and
β ∈ R.

Asymptotic properties of the corresponding orthogonal polynomials with respect to (1)
and of their zeros are obtained. In fact, we are interested in Mehler-Heine type formulae
because they describe in detail the asymptotic differences between these Sobolev orthogonal
polynomials and the classical Laguerre polynomials. In addition, we generalize some results
appeared in the literature (for example, in [1]).

This work has been published in [2].
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Universidad de Almeŕıa.
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Sufficient conditions for sampling and interpolation on
the sphere∗

J. Marzo and B. Pridhnani

Abstract

The classical Marcinkiewicz-Zygmund inequality [1] states that, for 1 < p < ∞, there
exist constants Cp > 0 such that for any P ∈ Pn

C−1
p

2n+ 1

2n
∑

k=0

|P (ωkn)|p ≤
∫ 2π

0

|P (eiθ)|pdθ ≤ Cp

2n+ 1

2n
∑

k=0

|P (ωkn)|p,

where Pn stands for the space of trigonometric polynomials of degree at most n, ωkn = e
2πik
2n+1

are the (2n+ 1)th roots of unity, and the constants Cp are independent of the degree n.
This result can be rephrased as saying that the array of roots of unity is both sampling

and interpolating for the spaces of trigonometric polynomials with the Lp norm.
I will talk about the generalization of these concepts to the sphere Sd, d ≥ 2, and its

relation with “well distributed” points on the sphere. Finally, I will present our recent work
about sufficient conditions for sampling and interpolation.

Keywords: Marcinkiewicz-Zygmund inequalities, interpolation, Laplace-Beltrami oper-
ator, points on the sphere.
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Some remarks on Lagrange interpolation in weighted
Lp−norm

Giuseppe Mastroianni

Abstract

The polynomial interpolation is an important tool in approximation theory, quadrature,
numerical differentiation, as well as in the numerical treatment of functional equations.

In this talk we will show some results, obtained in the last years, concerning the behaviour
of the Lagrange operator in different weighted spaces of functions. We will show that, under
proper necessary and sufficient conditions, the Lagrange polynomials converge with the order
of the best polynomial approximation in the considered function spaces.

Keywords: Lagrange interpolation, approximation by polynomials, orthogonal polyno-
mials.

AMS Classification: 41A05, 41A10.
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Dimension elevation vs. approximation by Bernstein
operators

Marie-Laurence Mazure and Rachid Ait-Haddou

Abstract

Let us start with an infinite nested sequence of Extended Chebyshev spaces, each of
them being assumed to possess a Bernstein basis. This situation automatically generates
an infinite so-called dimension elevation algorithm. The question of convergence of the
sequences of control polygons associated with given curves naturally arises.

On the other hand this situation also automatically generates an infinite sequence of
Bernstein operators all reproducing the same two-dimensional space. Again, the question of
convergence of this sequence towards identity naturally arises.

In this talk we examine the links existing between the two convergences, with still open
questions.

Keywords: extended Chebyshev spaces, dimension elevation, blossoms, Bernstein op-
erators.
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Wiener type theorems for Jacobi series with nonnegative
coefficients

Hrushikesh Mhaskar

Abstract

A well-known theorem by Norbert Wiener states that if f is a 2π–periodic function in
L1(−π, π) with non-negative Fourier coefficients cn(f) ≥ 0 and f ∈ L2(−δ, δ) for some δ > 0,
then f ∈ L2(−π, π).

The goal of this paper is to describe some analogues of this theorem in the case of
functions with nonnegative coefficients in their Jacobi expansions. We show that the Lp-
integrability of such functions (with respect to the Jacobi weight) on an interval near 1
implies the Lp-integrability on the whole interval if p is an even integer. The Jacobi expan-
sion of a function locally in L∞ near 1 is shown to converge uniformly and absolutely on
[−1, 1]; in particular, such a function is shown to be continuous on [−1, 1]. Similar results
are obtained for functions in local Besov approximation spaces. This is joint work with S.
Tikhonov.
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Some results on Bernstein type inequalities in integral
norms

Béla Nagy and Tamás Varga

Abstract

Bernstein inequality for polynomials on the inteval [−1, 1] was established in 1912 and
since then it has found many applications. In the last decades, this inequality was extended to
wider class of sets, using potential theory. In particular, on the real line the sharp Bernstein
type inequality was proved independently by Baran and Totik.

This inequality was extended to Lα norms where 1 ≤ α < ∞ on union of finite intervals
by Nagy and Toókos in 2013. We present some new partial results which are continuation
of this research: extension to 0 < α < 1 and further information about the error term.

This is a joint work with Tamás Varga.
This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 ”National

Excellence Program Elaborating and operating an inland student and researcher personal
support system”. The project was subsidized by the European Union and co-financed by
the European Social Fund.

Keywords: polynomial inequalities, Bernstein inequalities, potential theory, equilibrium
measure.
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A remark on a conjecture of P. Nevai∗

Incoronata Notarangelo

Abstract

In [4] P. Nevai conjectured that the analogous of a theorem in [3] could hold in the case
in which the orthogonal polynomials pn(α) are replaced by their derivatives. Moreover, in
the same paper he proved the conjecture for generalized Jacobi weights.

Conjecture 1 (P. Nevai [4]). Let 0 < p ≤ ∞. Then there is a constant C with the property
that for every measure α supported in [−1, 1] such that α′ > 0 almost everywhere there, the
inequality

(

∫ 1

−1

∣

∣

∣

∣

∣

f(t)
√

α′(t)(1− t2)3/4

∣

∣

∣

∣

∣

p

dt

)1/p

≤ C lim
n→

inf
∞

1

n

(
∫ 1

−1

|f(t)p′n(α, t)|
p
dt

)1/p

holds for every measurable function f in [−1, 1].

Here, using some results in [1, 2], we show that the conjecture holds for doubling weights
as well.

Keywords: orthogonal polynomials, derivatives of orthogonal polynomials, doubling
weights.
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Asymptotic expansions of multi-dimensional Mellin
convolution integrals

Pedro J. Pagola and José Luis López

Abstract

In a recent paper [Lopez, 2008], we have presented a new, very general and simple method
for deriving asymptotic expansions of

∫ ∞

0

f(t)h(x t)dt

for small x. In this paper we generalize that method to multi-dimensional integrals of the
form

∫

R
p
+

f(t1, . . . , tp)h(x t1, . . . , x tp) d
pt.

In this multi-dimensional case we require for f an extra condition not required in the one-
dimensional case, namely, f must satisfy a certain homogeneity property in its variables.
Watson’s Lemma for multiple integrals is obtained as a corollary. An asymptotic expansion
of the Lauricella’s function FA for large values of its variables is given as an illustration.
The possible application of the method to study the asymptotic behavior near the origin of
double Mellin-Barnes type convolution integrals [Yakubovich, 1993] is also indicated.

Keywords: asymptotic expansions of integrals, Mellin convolution integrals, Mellin
transforms, Watson’s lemma for multiple integrals, Lauricella’s function FA.
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Bivariate orthogonal polynomials and 2D Toda Lattices

Cleonice F. Bracciali and Teresa E. Pérez

Abstract

Oscillations of an infinite system of points joined by spring masses where the interaction
is is an exponential function of the distance between two spring masses are described by the
so–called Toda equations (1989). An explicit solution of the Toda lattice equations in one
time variable can be deduced by using orthogonal polynomials associated to an exponential
modification of a measure.

In this work, we explore the connections between an infinite system of points in R2

described by a bi–dimensional version of the Toda equations with the standard theory of
orthogonal polynomials in two variables.

Keywords: two variable orthogonal polynomials, Toda Lattice.
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Generalized coherent pairs of measures∗

J. Petronilho

Abstract

In this talk we present a survey of some results obtained in the last years around the
concept of coherent pair of measures and its generalizations, in the framework of the theory
of orthogonal polynomials.

Let (Pn)n and (Qn)n be two monic orthogonal polynomial sequences (OPS) with respect
to the measures dµ and dν, respectively. (dµ, dν) is called a coherent pair of measures if
(Pn)n and (Qn)n are linked by a linear differential structure relation of the type

Qn(x) =
1

n+1
P ′
n+1(x) + snP

′
n(x) , n = 0, 1, 2, · · ·

where (sn)n is a sequence of nonzero real numbers. The concept of coherent pair of measures
was introduced by A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna [On polynomials
orthogonal with respect to certain Sobolev inner products, J. Aprox. Theory, 65(2) (1991)
151-175] as an useful tool in Approximation Theory to explore polynomials orthogonal with
respect to the Sobolev inner product

〈f, g〉λ :=

∫

R

fg dµ+ λ

∫

R

f ′g′ dν ,

and since then it has been extensively studied by several authors, both from the algebraic
and the analytical points of view. We will speak about a generalization of the above con-
cept, called (M,N)−coherence of order (m, k), by considering a linear differential structure
relation such as

N
∑

i=0

ri,nQ
(m)
n−i+m(x) =

M
∑

i=0

si,nP
(k)
n−i+k(x) ,

(the orders of derivatives, k and m, being arbitrarily fixed nonnegative integer numbers, and
(ri,n)n and (si,n)n being sequences of numbers fulfilling some appropriate conditions), as well
as a Sobolev inner product of the form

〈f, g〉λ,r :=
∫

R

fg dµ+ λ

∫

R

f (r)g(r) dν .

∗CMUC, Department of Mathematics, University of Coimbra.
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From the algebraic view point, one of the most interesting properties fulfilled by these gen-
eralized coherent pairs is the fact that the linear functionals with respect to which (Pn)n
and (Qn)n are orthogonal are related by a rational transformation (in the distributional
sense) and they belong to the semiclassical class whenever m 6= k. We will also discuss some
questions in Approximation Theory involving the OPS with respect to the above Sobolev
inner product 〈·, ·〉λ,r under the assumption that (dµ, dν) forms an (M,N)−coherent pair of
measures of appropriate order, showing how the theory can be used for efficient evaluation
of Sobolev-Fourier coefficients.

Some extensions to the so-called discrete OPS will be mentioned.
Most results presented in this talk were obtained in collaboration, with F. Marcellán, R.

Álvarez-Nodarse, M.N. de Jesus, N. Pinzón-Cortés, and R. Sevinik-Adıgüzel.
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Orthogonal and non-orthogonal approaches in Fourier
continuous transforms

Daŕıo Ramos López and Andrei Mart́ınez-Finkelshtein

Abstract

Fourier transforms are widely used in several branches of mathematics and physics. In
Fourier optics, they are a necessary step to obtain the point spread function (PSF) or the
optical transfer function (OTF), which contain all the relevant optical information of a
system.

According to Fourier optics, the diffraction integral depending on a defocus parameter
transforms the complex pupil function into the impulse-response function, via a Fourier-type
2D integral.

For its computation, numerical procedures can be used (for instance, the bi-dimensional
fast Fourier transform, FFT). As an alternative, semi-analytical methods can be employed
to represent the complex pupil function and with it, a derivation of closed expressions for
the diffraction integral is made.

One possibility is the method based on the Zernike polynomials, which are orthogonal on
the unit disk, making use of the so-called extended Nijboer-Zernike theory [1]. This method
presents some inconveniences, such as the limitation to symmetrical systems.

A different approach has been recently proposed [2, 3], by using the Gaussian radial basis
functions, which are not orthogonal, but this is not a practical limitation.

In this talk, both procedures are derived and compared in terms of complexity and their
performance is tested with numerical experiments, showing a major improvement in the
computational time in the case of the non-orthogonal approach.

Keywords: Fourier transforms, diffraction integral, Zernike polynomials, extended Nijboer-
Zernike theory, radial basis functions.
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04120, Almeŕıa (Spain).
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Characterization theorem for Laguerre-Hahn orthogonal
polynomials on non-uniform lattices

Maria das Neves Rebocho

Abstract

Laguerre-Hahn orthogonal polynomials on non-uniform lattices were introduced by A.P.
Magnus in [2]: a sequence of orthogonal polynomials is said to be Laguerre-Hahn if the
corresponding formal Stieltjes function, S, satisfies a Riccati equation with polynomial co-
efficients

A(x)(DS)(x) = B(x)(E1S)(x)(E2S)(x) + C(x)(MS)(x) +D(x) , A 6= 0 , (1)

where D is the divided difference operator involving the values of a function at two points,
with the fundamental property that D leaves a polynomial of degree n− 1 when applied to
a polynomial of degree n [2, Eq. (1.1)]

(Df)(x) =
(E2f)(x)− (E1f)(x)

y2(x)− y1(x)
, (2)

with

(E1f)(x) = f(y1(x)) , (E2f)(x) = f(y2(x)) . (3)

In this talk it is given a characterization theorem for Laguerre-Hahn orthogonal polyno-
mials on non-uniform lattices [1]. The theorem proves the equivalence between the Riccati
equation for the formal Stieltjes function, linear first-order difference relations for the or-
thogonal polynomials as well as for the associated polynomials of the first kind, and linear
first-order difference relations for the functions of the second kind.

Keywords: orthogonal polynomials, non-uniform lattices, semiclassical linear function-
als, structure relations.
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Convergence of rational Bernstein operators

Hermann Render

Abstract

In this talk we discuss convergence properties and error estimates of rational Bernstein
operators introduced by P. Piţul and P. Sablonnière fixing linear polynomials. It is shown
that the rational Bernstein operators converge to the identity operator if and only if the max-
imal difference between two consecutive nodes is converging to zero. Further a Voronovskaja
theorem is given based on the explicit computation of higher order moments for the rational
Bernstein operator.

Keywords: Rational approximants, Bernstein operator, positive operator.
AMS Classification: 41A20, 41A36.
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and surfaces, Comput. Aided Geom. Design 22 (2005) 321–326.

[4]G.T. Tachev, The complete asymptotic expansion for Bernstein operators, J. Math.
Anal. Appl. 385 (2012), 1179–1183.

[5]G.T. Tachev, The rate of approximation by rational Bernstein functions in terms of
second order moduli of continuity, Numer. Funct. Anal. Optim. 33 (2012), 206–215.

Hermann Render,
School of Mathematical Sciences,
University College Dublin,
Dublin 4, Ireland.
hermann.render@ucd.ie

77



V Jaen Conference on Approximation Theory

Úbeda, Jaén, Spain, June 23rd-26th, 2014

Filling holes with smoothness conditions

M.A. Fortes, P. González, M. Pasadas and M.L. Rodŕıguez

Abstract

In this work we develop a method to fill a hole in a 3D scattered dataset, which may come
from an explicit surface or have been obtained in a empirical way. We construct a surface
which is very close to the given dataset and which fills the hole in such a way that the
final reconstruction has the desired smoothness Ck, for k ≥ 0. We give results which prove
the existence and uniqueness of solution of the proposed method, and we present several
examples which show the efficiency of the developed theory.

Keywords: Hole filling, Powell-Sabin splines, minimal energy surfaces.
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Dynamics of equilibrium measures in the presence of
certain rational external fields

J.F. Sánchez-Lara and R. Orive

Abstract

The subject of the present talk is the study of families of equilibrium measures in the
real line in the presence of rational external fields (that is, when the derivative of the field is
a rational function). It is well known that the support of an equilibrium measure in a real
analytic external field is comprised of a finite number of intervals. In the last years, many
papers have dealt with equilibrium problems in the presence of polynomial external fields,
paying special attention to the evolution of the support of the equilibrium measure when the
total mass of the measure (also regarded as the “time” or “temperature”) varies.

In the present talk, we center in the case of rational fields with a part created by a
number of attractive or repulsive charges placed in C and also study the dynamics when
other parameters of the external field vary, as for example the position of the charges. These
external fields are related for instance with generalized Heine-Stieltjes polynomials and are
present on a number of physical problems related to random matrix models.
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Approximation by Chlodowsky type Baskakov operators

Sevilay Kırcı Serenbay, İbrahim Büyükyazıcı and Çiğdem Atakut

Abstract

In this study, we give a generalization of the Baskakov type operators , special case
of this operator includes Chlodowsky type MKZ operator (introduced by L. Rempulska
and M. Skorupka [8]), for functions on [0, bn] (n → ∞) extending infinity and prove some
approximation properties of these operators with the help of a Korovkin type theorem.
Secondly, we compute the rate of convergence of the operators by means of asymptotic
inequality and also we introduce modify the operators for differentiable functions. Finally,by
using the operators, we present an application to differential equation.

Keywords: approximation, Chlodowsky type MKZ operators, Baskakov operators, asymp-
totic approximation, differential equation.
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[6] A. D. Gadjiev, R. O. Efendiev and E. İbikli, Generalized Bernstein-Chlodowsky
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On a quasi-interpolating Bernstein operator

József Szabados

Abstract

We consider a special case of the modification of Lagrange interpolation due to Bernstein.
Compared to Lagrange interpolation, these operators interpolate at less points, but they
converge for all continuous functions in case of the Chebyshev nodes. Upper and lower
estimates for the rate of convergence are given, and the saturation problem is partially
solved.

Keywords: Bernstein operator, Lagrange interpolation, Chebyshev polynomial, error
estimate, saturation.
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Construction of a non-linear quasi-interpolation based
on the cubic B-splines

Hyoseon Yang and Jungho Yoon

Abstract

Quasi-interpolation is a very useful tool for multivariate data approximation. It enables
very large-scale data sets to be handled efficiently. The linear quasi-interpolation has ad-
vantages in simplicity and fast computation, but often suffers from ringing artifacts when
approximating across discontinuities. In this regard, for a better match to the local struc-
tures, this paper presents a non-linear quasi-interpolation method. To this end, we first
discuss a smoothness indicator which measures the local smoothness of the given data and
then construct explicitly a local non-linear approximation scheme to approximate data with
singularities. Error analysis of the proposed scheme is provided by showing that the scheme
has the same approximation order as the corresponding linear B-spline method. Finally,
some numerical experiments are performed to demonstrate the ability of the new scheme to
reduce the ringing artifacts near discontinuities.

Keywords: non-linear approximation, quasi-interpolation, cubic B-spline, approxima-
tion order, smoothness indicator.
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New ideas and results for the Gasca-Maeztu conjecture

Hakop Hakopian, Kurt Jetter and Georg Zimmermann

Abstract

An n-poised set in two dimensions is a set of nodes admitting unique bivariate interpo-
lation with polynomials of total degree at most n. We are interested in poised sets with the
property that all fundamental polynomials are products of linear factors. In 1982, M. Gasca
and J. I. Maeztu conjectured that every such set necessarily contains n+ 1 collinear points.
The case n = 4 was proved for the first time in 1990 by J. R. Busch [1], later with different
methods by J. M. Carnicer and M. Gasca [2], and later again with different methods by the
authors [3]. The case n = 5 was shown by the authors in [4]. We present new ideas pointing
towards a general result.

Keywords: polynomial interpolation, Gasca-Maeztu conjecture, fundamental polyno-
mial, maximal line, poised set.
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