OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
APMO |
OMCC |
Retos UJA |
Nota. De hecho, lo anterior prueba que el menor valor posible de $a_{100}$ bajo las condiciones del enunciado es $2^{100}-1$ y se obtiene únicamente para $a_1=1$ y $a_0=0$.
Nota. En realidad, la propiedad propuesta se deduce de que $r-s$ divide a $r^n-s^n$ para todo $n\in\mathbb{N}$, lo cual es a su vez consecuencia de la factorización \[r^n-s^n=(r-s)(r^{n-1}+r^{n-2}s+r^{n-3}s^2+\ldots+s^{n-1}).\]
Nota. Si se alcanza la igualdad, entonces $a^2=b^2=c^2=d^2$, luego $a=b=c=d$ por ser números positivos y, como su producto es $1$, los cuatro números tienen que ser iguales a $1$. Recíprocamente, si los cuatro números son iguales a $1$, la igualdad se alcanza, luego este es la única situación en la que se alcanza.
Nota. El mismo razonamiento vale cambiando los números $0,1,2,3$ por otros. Lo que ocurre es que posiblemente no podamos llegar hasta $B=90^\circ$ por las restricciones sobre $AC$ y tengamos que discutir dónde el seno es máximo.
Nota. Lo que hemos probado realmente es que el máximo de la sucesión se alcanza estrictamente en $a_0$ y $a_n$ o bien la sucesión es constante cero. Más aún, no es difícil ver a partir de este argumento que si la sucesión no es constante cero, entonces tiene un único mínimo y es estrictamente decreciente hasta el mínimo y luego estrictamente creciente hasta el máximo