OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Para ello, vamos a tomar las rectas que contienen a los lados impares $a_1,a_3,a_5,a_7$. Como los ángulos interiores son iguales a $45º$, estas rectas son paralelas dos a dos y forman un rectángulo $R$. Además, si a $R$ le quitamos el octógono, quedarán cuatro triángulos rectángulos isósceles de hipotenusas $a_2,a_4,a_6,a_8$, por lo que sus catetos serán $\frac{a_2}{\sqrt{2}},\frac{a_4}{\sqrt{2}},\frac{a_6}{\sqrt{2}},\frac{a_8}{\sqrt{2}}$, respectivamente. Imponiendo ahora que los lados opuestos de $R$ deben tener igual longitud, nos quedan las relaciones \[\frac{a_4+a_6}{2}\sqrt{2}+a_5=\frac{a_8+a_2}{2}\sqrt{2}+a_1,\qquad \frac{a_2+a_4}{2}\sqrt{2}+a_3=\frac{a_6+a_8}{2}\sqrt{2}+a_7.\] Si usamos finalmente que los lados tienen longitudes enteras, entonces los términos que multiplican a $\sqrt{2}$ deben ser iguales (ya que $\sqrt{2}$ es irracional, mientras que el resto de términos son racionales), lo que nos lleva a reformular las igualdades anteriores como \[\frac{a_4+a_6}{2}=\frac{a_8+a_2}{2},\qquad a_5=a_1,\qquad \frac{a_2+a_4}{2}\sqrt{2}=\frac{a_6+a_8}{2},\qquad a_3=a_7,\] probando así la igualdad que queríamos.
Nota. ¿Es cierto el mismo resultado para un hexágono?