Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.

I USA Mathematical Olympiad — 1972

Sesión 1

Problema 1230
Demostrar que \[\frac{(\mathrm{mcm}(a,b,c))^2}{\mathrm{mcm}(a,b)\,\mathrm{mcm}(b,c)\,\mathrm{mcm}(c,a)}=\frac{(\mathrm{mcd}(a,b,c))^2}{\mathrm{mcd}(a,b)\,\mathrm{mcd}(b,c)\,\mathrm{mcd}(c,a)}\] para cualesquiera enteros positivos $a,b,c$.
pista
Sin soluciones
info
Pista. Razona lo que pasa para cada número primo por separado.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1231
Un tetraedro $ABCD$ verifica $AB=CD$, $AC=BD$ y $AD=BC$. Demostrar que sus caras son triángulos acutángulos.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1232
Un generador de números aleatorios elige con la misma probabilidad uno de los nueve dígitos $1, 2,\ldots, 9$. Hallar la probabilidad de que después de generar $n$ números, su producto sea divisible por $10$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1233
Hallar números enteros $a,b,c,d,e,f$ tales que \[\left|\frac{aR^2+bR+c}{dR^2+eR+f}-\sqrt[3]{2}\right|\lt |R-\sqrt[3]{2}|\] se cumpla para todo número racional no negativo $R$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1234
Un pentágono convexo $ABCDE$ tiene la propiedad de que el área de cada uno de los cinco triángulos $ABC$, $BCD$, $CDE$, $DEA$ y $EAB$ es uno. Demostrar qeu todos los pentágonos con esta propiedad tienen la misma área y calcularla. Demostrar, además, que hay una cantidad infinita de pentágonos no congruentes con dicha propiedad.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre