Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.

III USA Mathematical Olympiad — 1974

Sesión 1

Problema 64
Demostrar que no existe ningún polinomio $P(x)$ con coeficientes enteros y tres enteros distintos $a$, $b$ y $c$ tales que $P(a)=b$, $P(b)=c$ y $P(c)=a$.
pistasolución 1info
Pista. Utiliza que si $P(x)$ es un polinomio con coeficientes enteros y $a$ y $b$ son números enteros distintos, entonces $b-a$ divide a $P(b)-P(a)$.
Solución. Supongamos que $P(x)$ cumple la propiedad del enunciado y lleguemos a una contradicción. Como $P(x)$ es un polinomio con coeficientes enteros, $a-b$ divide a $P(a)-P(b)=b-c$. De la misma forma, $b-c$ divide a $P(b)-P(c)=c-a$ y $c-a$ divide a $P(c)-P(a)=a-b$. Esto nos da la cadena de desigualdades \[|a-b|\leq|b-c|\leq|c-a|\leq|a-b|,\] de donde $|a-b|=|b-c|=|c-a|$. Si suponemos que $a\lt b\lt c$ sin perder generalidad, esto nos dice que $b-a=c-b=c-a$ y, claramente se deduce que $a=b=c$, lo cual es una contradicción.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 265
Sean $a$, $b$ y $c$ números reales positivos. Demostrar que \[a^ab^bc^c\geq(abc)^{(a+b+c)/3}.\]
pistasolución 1solución 2info
Pista. Toma logaritmos para eliminar los exponentes. Después hay varias posibilidades: una de ellas usando la desigualdad de Jensen y otra con la de reordenación.
Solución. Tomando logaritmos en la desigualdad del enunciado, ésta es equivalente a \[\frac{a\ln(a)+b\ln(b)+c\ln(c)}{a+b+c}\geq\frac{\ln(a)+\ln(b)+\ln(c)}{3}.\] Aplicando la desigualdad de Jensen a la función cóncava $f(x)=\ln(x)$ y a los números $x_1=a$, $x_2=b$ y $x_3=c$, con pesos $t_1=\frac{a}{a+b+c}$, $t_2=\frac{b}{a+b+c}$ y $t_3=\frac{c}{a+b+c}$, tenemos que \begin{eqnarray*} \frac{a\ln(a)+b\ln(b)+c\ln(c)}{a+b+c}&=&f(t_1x_1+t_2x_2+t_3x_3)\\ &\geq& t_1f(x_1)+t_2f(x_2)+t_3f(x_3)=\log\left(\frac{a^2+b^2+c^2}{a+b+c}\right). \end{eqnarray*} Por otro lado, las desigualdades entre las medias aritmética y cuadrática y entre las medias cuadrática y geométrica nos dicen que \[\sqrt{\frac{a^2+b^2+c^2}{3}}\geq\frac{a+b+c}{3},\qquad \sqrt{\frac{a^2+b^2+c^2}{3}}\geq\sqrt[3]{abc},\] y multiplicando estas dos desigualdades llegamos fácilmente a que \[\frac{a^2+b^2+c^2}{a+b+c}\geq\sqrt[3]{abc}.\] Usando esta desigualdad en el resultado que obtuvimos de la de Jensen, llegamos a que \[\frac{a\ln(a)+b\ln(b)+c\ln(c)}{a+b+c}\geq\log(\sqrt[3]{abc})=\frac{\ln(a)+\ln(b)+\ln(c)}{3},\] que es la desigualdad buscada.

Nota. Otra forma de resolver este problema consiste en usar la desigualdad de Jensen sobre la función convexa $f(x)=x\ln(x)$.La igualdad se alcanza si, y sólo si, $a=b=c$, tal y como se deduce de la desigualdad de las medias o de la de Jensen.

Solución. Si suponemos que $a\leq b\leq c$, entonces $\ln(a)\leq\ln(b)\leq\ln(c)$ están ordenados en el mismo orden. Por lo tanto, tenemos que \begin{eqnarray*} a\ln(a)+b\ln(b)+c\ln(c)\geq b\ln(a)+c\ln(b)+a\ln(c),\\ a\ln(a)+b\ln(b)+c\ln(c)\geq c\ln(a)+a\ln(b)+b\ln(c),\\ a\ln(a)+b\ln(b)+c\ln(c) = a\ln(a)+b\ln(b)+c\ln(c). \end{eqnarray*} La primeras dos desigualdades se obtienen por la desigualdad de reordenación y la última es una igualdad trivial. Sumando las tres expresiones, llegamos a que \[a\ln(a)+b\ln(b)+c\ln(c)\geq\frac{a+b+c}{3}(\ln(a)+\ln(b)+\ln(c)),\] que es equivalente a la desigualdad propuesta, sin más que tomar logaritmos.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1302
Tenemos dos puntos sobre una esfera de radio $1$ unidos por una curva interior a la esfera de longitud menor que $2$. Probar que la curva está contenida completamente en cierto hemisferio de la bola.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1303
Un padre, una madre y un hijo compiten en un torneo familiar jugando a un juego de mesa en el que no hay empates. Las reglas del torneo son las siguientes:
  • El jugador más débil elige qué dos jugadores compiten en primer lugar.
  • El ganador de cualquier partida juega la siguiente partida contra la persona que se había quedado sin jugar.
  • La primera persona que gana dos partidas gana el torneo.

El padre es el jugador más débil, el hijo el más fuerte y se asume que la probabilidad de que cualquier jugador gane no cambia durante todo el torneo. Demuestra que la estrategia óptima que debe seguir el padre para ganar el torneo es jugar la primera partida contra su esposa.

Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1304
Consideramos los triángulos $\Delta ABC$ y $\Delta PQR$ que se muestran en la figura. Sabiendo que $\angle ADB=\angle BDC=\angle CDA=120^\circ$, demostrar que $x=u+v+w$.
imagen
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre