OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
La ecuación inicial se puede escribir como $f(x)^2f(\varphi(x))=64x$. Si sustituimos $x$ por $\varphi(x)$, obtenemos que $f(\varphi(x))^2\cdot f(x)=64\varphi(x)$, con lo cual tenemos el sistema \[\left\{\begin{array}{l}f(x)^2f(\varphi(x))=64x,\\f(\varphi(x))^2 f(x)=64\varphi(x).\end{array}\right.\] Elevando la primera igualdad al cuadrado y dividiéndola por la segunda (que no se anula ya que $x\neq\pm 1$, luego $\varphi(x)\neq 0$) llegamos a que $f(x)^3=64\frac{x^2}{\varphi(x)}$, de donde podemos despejar \[f(x)=\sqrt[3]{\frac{64x^2}{\varphi(x)}}=4\sqrt[3]{\frac{x^2(1+x)}{1-x}}.\] Puede comprobarse que esta función está bien definida para $x\neq-1$ y satisface la igualdad del enunciado, luego es la única solución al problema.
Esto termina de probar que $a_r=1+c_r^2$ para todo $r\in\mathbb{N}$, con lo que el enunciado está demostrado.
Nota. Sin duda el paso más difícil en esta demostración es sacarse de la manga la sucesión $c_r$. Si uno intuye que la $c_r$ debe cumplir una recurrencia lineal del tipo $c_r=\alpha c_{r-1}+\beta c_{r-2}$, pueden calcularse algunos términos para ver que ha de ser $\alpha=4$ y $\beta=-1$.
Para el segundo apartado, vamos a hacer uso de la fórmula de la tangente del la suma. Concretamente, dados $x,y,z\in(0,\frac{\pi}{2})$, de dicha fórmula se deduce que \[\mathrm{tg}(x+y+z)=\frac{\mathrm{tg}(x+y)+\mathrm{tg}(z)}{1-\mathrm{tg}(x+y)\mathrm{tg}(z)}=\frac{\mathrm{tg}(x)+\mathrm{tg}(y)+\mathrm{tg}(z)-\mathrm{tg}(x)\mathrm{tg}(y)\mathrm{tg}(z)}{1-\mathrm{tg}(x)\mathrm{tg}(y)-\mathrm{tg}(y)\mathrm{tg}(z)-\mathrm{tg}(z)\mathrm{tg}(x)}.\] Sustituyendo $x=\mathrm{arctg}(r)$, $y=\mathrm{arctg}(s)$ y $z=\mathrm{arctg}(t)$, tenemos que \[\mathrm{tg}(\mathrm{arctg}(r)+\mathrm{arctg}(s)+\mathrm{arctg}(t))=\frac{(r+s+t)-rst}{1-(rs+st+rt)}=\frac{\frac{13}{3}-\frac{2}{3}}{1-\frac{14}{3}}=-1.\] ya que las relaciones de Cardano para el polinomio $p(x)$ nos aseguran que \[ r+s+t=\frac{13}{3},\quad rs+st+rt=\frac{14}{3},\quad rst=\frac{2}{3}. \] Esto nos dice que existe un número entero $k$ tal que \[\mathrm{arctg}(r)+\mathrm{arctg}(s)+\mathrm{arctg}(t)=-\frac{\pi}{4}+k\pi.\] Como $r,s,t\gt 0$, tenemos que $0\lt \mathrm{arctg}(r)+\mathrm{arctg}(s)+\mathrm{arctg}(t)\lt\frac{3\pi}{2}$, de donde $k=1$ y \[\mathrm{arctg}(r)+\mathrm{arctg}(s)+\mathrm{arctg}(t)=\frac{3\pi}{4}.\]