| OME Local |
| OME Andaluza |
| OME Nacional |
| OIM |
| IMO |
| EGMO |
| USAMO |
| ASU |
| APMO |
| OMCC |
| Retos UJA |
Nota: la torre de exponentes se define recursivamente como $a_1=2$ y $a_{k+1}=2^{a_k}$ para tod $k\neq 1$. Además, la notación $(\text{mod }n)$ significa que nos quedamos con el resto módulo $n$ de cada elemento $a_k$.
Nota: puede ser interesante analizar la razón $\frac{a^N-N^N}{a-N}$ para $a\geq 0$ real y $N\geq 1$ entero.