OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Podemos completar el cuadrado para expresar \[i(p)=\tfrac{-3}{7}(p^2-1300p)=\tfrac{3}{7}650^2-\tfrac{3}{7}(p-650)^2.\] Por tanto, los ingresos serán máximos cuando $(p-650)^2$ sea mínimo, es decir, para $p=650$, en cuyo caso los ingresos máximos vendrán dados por $\tfrac{3}{7}650^2$ euros, respondiendo así al apartado (b). En cuanto al apartado (a), la respuesta es afirmativa puesto que la función $i(p)$ es creciente en el intervalo $(0,650)$ y, en particular, en el precio inicial $p=600$.
Nota. La última parte se puede analizar también con la derivada. Probablemente, el ejercicio original estaba pensado para hacerse con una derivada.
Nota. Un cálculo similar muestra que si el triángulo rectángulo no es necesariamente isósceles, entonces $R+r=\frac{b+c}{2}$, donde $b$ y $c$ son las longitudes de los catetos.
Nota. Obviamente podría haberse sustituido $1999$ por cualquier otro número impar.