OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Para cada entero positivo $k$, determinar todos los $n$ para los cuales se cumple que toda $(n,k)$-nube contiene dos circunferencias tangentes exteriormente del mismo color.
Nota: Para evitar ambigüedades, los puntos que pertenecen a más de una circunferencia no llevan color.
Probemos por tanto la igualdad (b) para lo que supondremos sin perder generalidad que en la recta $PQ$ los puntos están en el orden $PEFQ$. Los triángulos $OBM$ y $AEC$ son semejantes ya que son rectángulos y $\angle BAF=\angle BOM$ (por ser este último la mitad del ángulo central correspondiente al primero), luego \[\frac{OM}{BM}=\frac{AE}{CE}=\frac{AE\cdot AB}{CE\cdot AB}=\frac{AE\cdot AB}{AD\cdot BC},\] donde hemos usado que $CE\cdot AB=AD\cdot BC$ (esta cantidad es el doble del área de $ABC$). Usando ahora que $BC=2\cdot BM$, podemos despejar $2\cdot OM\cdot AD=AE\cdot AB$. Para probar finalmente que $AE\cdot AB=AP^2$, basta observar que los triángulos $APB$ y $AEP$ son semejantes lo cual se deduce de que comparten un ángulo (en el vértice $A$) y de que $\angle APB=\angle AEP$. Para ver esto último, observemos que $\angle APB=180-\angle ACB$ por arco capaz y $\angle AEP=180-\angle AEF$. Como el cuadrilátero $AEHF$ es inscriptible, otra vez por arco capaz tendremos que $\angle AEF=\angle AHF=90-\angle CAD=\angle ACB$, con lo que el problema queda resuelto.