OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
La respuesta al apartado (b) es afirmativa. Para verlo, usamos la desigualdad entre las medias aritmética y armónica aplicada a los tres números positivos $x,y,z$: \[\frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\leq \frac{x+y+z}{3}\leq 1\ \Longleftrightarrow\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3.\]
Para ver que el ángulo $x=\angle AMB$ es $45^\circ$, probaremos que su seno al cuadrado es $\frac{1}{2}$ (como $x\lt 90^\circ$, esto termina la demostración). Usando el teorema del seno en el triángulo $ABM$, tenemos que \begin{align*} \frac{c}{\mathrm{sen}(x)}=\frac{m}{\mathrm{sen}(105)}&\ \Longleftrightarrow\ \mathrm{sen}^2(x)=\frac{c^2\,\mathrm{sen}^2(105)}{m^2}=\frac{\frac{1}{2}\cdot\frac{2+\sqrt{3}}{4}}{\frac{2+\sqrt{3}}{4}}=\frac{1}{2}. \end{align*}
Nota. Da igual el color de las bolas iniciales siempre que al menos una de ellas sea negra (si empezamos con todas blancas no hay nada que demostrar).
Nota. Aunque la otra solución propuesta es más elegante, hay trucos que permiten manipular potencias de las raíces de un polinomio con cierta fluidez. En una prueba de olimpiada puede preferirse un cálculo más largo si estamos convencidos de que así saldrá la solución frente a buscar opciones más elegantes.
Que $CEF$ es equilátero implica que $EF=CE=DE$, ya que $CDE$ es claramente isósceles. Además, esto último nos dice que $\angle DEF=180-15-15=150$, con lo que $\angle DEF=150-60=90$. Tenemos entonces probado el apartado (b): $DEF$ es rectángulo e isósceles porque tiene dos lados iguales que forman un ángulo recto.
Ahora observamos que $\angle DEB=60+75=\angle FEB$, luego la recta $EB$ es la bisectriz interior del ángulo recto $\angle DEF$. Esta bisectriz es mediatriz del triángulo isósceles $DEF$, luego cualquier punto de $BE$ está a la misma distancia de $D$ que de $F$. En particular, el triángulo $BDF$ es isósceles y ya tenemos (c).
Tenemos que $PDF$ es isósceles por el mismo motivo, luego será suficiente ver que $\angle DFP=60$ y habremos terminado (hay realmente muchas formas de hacerlo). Como $\angle DBE=60-45=15$, tenemos que $\angle EBF=15$, luego también tenemos que $\angle FBC=90-45-15-15=15$. En otras palabras, $FB$ es bisectriz (y por tanto mediatriz) en el triángulo isósceles $CBE$, luego también lo es del triángulo equilátero $EFC$. Esto nos lleva a que $\angle EFB=\angle BFE=30$. Si trazamos ahora el segmento $PF$, que es paralelo a $BC$ por la simetría, tenemos que $\angle PFB=\angle CBF=15$ por ser ángulos internos alternos, luego $\angle DFP=45+15=60$ como queríamos probar.
Nota. Este problema se ha marcado con 2,5 estrellas porque es realmente fácil omitir el caso $x=\frac{1}{2}(1\pm\sqrt{5})$ y decir que $f(x)=1-x^2$ para todo $x\in\mathbb{R}$ (este fallo está incluso en la solución oficial), que se corresponde con el caso $a=\frac{-1+\sqrt{5}}{2}$.