OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Nota. En realidad, es necesario que el enunciado diga que $P$ tiene al menos cuatro puntos o que los puntos de $P$ no están alineados. Por ejemplo, un conjunto $P$ formado por tres puntos alineados cumple la condición pero no todos los puntos de $P$ están en una circunferencia.
Los triángulos $AA'P$ y $BB'P$ son semejantes porque son rectángulos y tienen un ángulo común en el vértice $P$, luego se cumple que \[\frac{AP}{BP}=\frac{A'P}{B'P},\] lo que también nos dice que $ABP$ y $A'B'P$ son semejantes. De forma similar se prueba que $BCP$ y $B'C'P$ son semejantes, que $CDP$ y $C'D'P$ son semejantes y que $DAP$ y $D'A'P$ son semejantes. La razón de semejanza es la misma para los cuatro pares de triángulos ya que se tiene que $\frac{AP}{A'P}=\frac{BP}{B'P}=\frac{CP}{C'P}=\frac{DP}{D'P}$, luego el cuadrilátero $A'B'C'D'$ es semejante a $ABCD$ ya que está formado por cuatro triángulos semejantes en disposición similar. Más aún, $A'B'C'D'$ se obtiene de $ABCD$ a partir de una reflexión respecto de una de las bisectrices de las diagonales y una homotecia.
Hemos demostrado que las únicas soluciones son $x=2+\sqrt{2}$ y $x=2-\sqrt{2}$.
Nota. Si procedemos directamente simplificando la ecuación inicial y tenemos en cuenta que $x+1\neq 0$, llegamos a la ecuación de cuarto grado $x^4-6x^3+14x^2-20x+8=0$. Esta se puede factorizar sobre los enteros como producto de dos ecuaciones de segundo grado $(x^2-4x+2)(x^2-2x+4)=0$, de donde también se deduce la solución.
De la misma manera, se comprueba que $5555\equiv 4\ (\text{mod }7)$, luego $5555^{222}\equiv 4^{2222}\ (\text{mod }7)$. Tenemos que $4^1\equiv 4$, $4^2\equiv 2$ y $4^3\equiv 1$ módulo $7$, y hacemos la división euclídea de $2222$ entre $3$, que nos da $2222=740\cdot 3+2$. Por tanto, \[5555^{2222}\equiv 4^{2222}=(4^3)^{740}\cdot 4^2\equiv 1^{740}\cdot 2\equiv 2\ (\text{mod }7).\] Esto nos da finalmente el resultado deseado: \[2222^{5555}+5555^{2222}\equiv 5+2\equiv 0\ (\text{mod }7).\]
Para terminar, vamos a expresar el resultado sin que intervenga $M$, por rizar el rizo. Tenemos que $MP=\frac{1}{2}PQ$ y que $OM$ es la mediana de $OPQ$. Usando la fórmula de la meidana, la condición que buscamos se puede escribir finalmente como \[\frac{1}{2}PQ+\sqrt{\frac{OP^2+OQ^2}{2}-\frac{PQ^2}{4}}\geq R.\]
Nota. En realidad, cuando la desigualdad es estricta, hay dos soluciones ya que hay dos puntos de corte de ambas circunferencias.
Nota. La desigualdad entre las medias aritmética y geométrica con pesos se puede ver también como la desigualdad de Jensen para la función cóncava $f(t)=\ln(t)$. La pista la da el hecho de que los exponentes sumen $1$ pero puede ser difícil darse cuenta de que hay que invertir primero para que los signos de la desigualdad vayan en el sentido correcto.
Como los pesos son todos positivos, la igualdad se alcanza sólo cuando $x_1=x_2=x_3$, es decir, cuando $a=b=c$.
Como $P$ está en el segmento $MR$ y $M$ es el punto medio de $RS$, se sigue que $PR\lt PS$; además, se tiene que $\angle PRB$ es agudo mientras que $\angle CSR=180-\angle PRB$ es obtuso. Esto nos dice que si giramos $180^\circ$ el triángulo $PRB$ respecto de $P$ obtenemos un triángulo $PR'B'$ contenido en $PCS$, luego ciertamente el área de $PBR$ es menor que el área de $PCS$ y hemos terminado la demostración.
Nota. Una pregunta natural es si $30$ es el número óptimo y la respuesta es que sí. Se pueden encontrar formas de distribuir los $30$ comités de $5$ miembros con un solo miembro en la intersección de cada para de ellos. Una forma muy interesante de hacerlo es tomar cada miembro del club como uno puntos $(x,y)$ de coordenadas enteras entre $0$ y $4$ (un total de $25$ puntos). Cada comité estaría formado por los puntos que cumplen la condición $ax+by\equiv c\ (\text{mod }5)$, siendo $a,b\in\mathbb{Z}$ números enteros. ¿Sabrías probar que hay exactamente $30$ comités y dos cualesquiera de ellos tienen $0$ o $1$ elementos en común?