OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Si $n$ no es múltiplo de $5$, entonces nunca se obtiene un múltiplo de $5$ en el proceso. Para $n=3$, tenemos $3\mapsto 8\mapsto 4\mapsto 2\mapsto 1$ y, para $n\geq 7$, al ser $n$ impar, los primeros pasos serán $n\mapsto n+5\mapsto\ldots\mapsto \frac{n+5}{2^k}$ siendo $\frac{n+5}{2^k}$ impar. Como $\frac{n+5}{2^k}\lt n$ por ser $n\geq 7$ y $k\geq 1$, reducimos el problema al de un impar más pequeño. Deducimos así que el proceso siempre termina para cualquier $n$ que no es múltiplo de $5$.
si y solo si. Una de ellas es muy sencilla y, para la otra, calcula el vértice de la parábola (es decir, el valor mínimo que toma el polinomio $p(x)$) en términos de $a,b,c$.
Para ver esto, será suficiente ver que $A$ tiene la misma potencia respecto de ambas circunferencias. La potencia de $A$ respecto de la circunferencia de centro $B$ es $AF\cdot(AF+2BF)$. La potencia de $A$ respecto de la circunferencia de centro $P$ es $AG\cdot AJ$. Ahora bien, tenemos que $AG=AF$ por estar $A$ en la bisectriz del ángulo $A$ y $GJ=DH$ por estar $P$ en la bisectriz del ángulo $C$. Además, $DH=2DE$ por ser $E$ el pie de la perpendicular a la cuerda $DH$ desde el centro $P$ y, finalmente, $DE=BD$ por la hipótesis del enunciado. Tenemos así que $AG\cdot AJ=AF\cdot(AF+2BF)$, como queríamos demostrar.
Para ello, sean $F$ y $G$ los puntos en que la circunferencia inscrita es tangente a los lados $AB$ y $AC$, respectivamente. Usando que $CX=CE$, $BF=BD=DE$, $AF=AG$ y $CG=CD$, tenemos que \[AX=AC-CX=AG+CG-CE=AF+CG-CD-BD+2BD=AF+BF=AB.\]
La idea ahora es que, para cada divisor $3\leq n\leq 27$ de $720$, estudiaremos si existe un par de enteros positivos $(a,d)$ verificando simultáneamente $2a+(n-1)d=360-\frac{720}{n}$ y $d\lt\frac{720}{n(n-1)}$. Lo haremos caso por caso ya que no son muchos
Deducimos así que los posibles valores de $n$ son $3$, $4$, $5$, $6$, $8$, $10$, $12$, $15$ y $18$.
De esta manera, en la suma de divisores, tras agrupar cada divisor con su complementario, tendremos una suma de múltiplos de $3$ y hemos resuelto el problema. Sin embargo, queda por ver que todos los divisores están emparejados, lo cual es cierto a no ser que $n$ sea un cuadrado perfecto (en cuyo caso $d=\sqrt{n}$ coincide con su complementario $\frac{n}{d}=\sqrt{n}$). Como todo cuadrado es congruente con $0$ o $1$ módulo $3$, este caso no se da nunca.
Nota. Se trata de una suma telescópica en la que cada sumando se escribe como diferencia de dos términos, de forma que al sumar estos términos se cancelan casi todos. Una forma de hacer esto (que funciona con cualquier suma cuyo término general es racional y cuyo denominador tiene raíces enteras simples) es escribir \[\frac{n+2}{n(n+1)(n+3)(n+4)}=\frac{A}{n}+\frac{B}{n+1}+\frac{C}{n+3}+\frac{D}{n+4}\] y resolver las variables $A,B,C,D\in\mathbb{R}$ para que la igualdad sea cierta para todo $n$. En este caso, se tiene que $A=-B=C=-D=\frac{1}{6}$ y pueden agruparse los sumandos por parejas (aunque no es necesario hacerlo así en general). Al sumar en la igualdad anterior, salvo el factor $\frac{1}{6}$, se suman y restan inversos de enteros. Cancelándolos convenientemente se obtiene el resultado de arriba.