OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Nota. No se puede expresar el resultado final en términos de funciones trigonométricas.
En el pentágono regular de lado $1$ de la figura, los triángulos $ACD$ y $DEP$ son semejantes pues sus lados son paralelos. Si llamamos $d$ a la longitud de la diagonal del pentágono, la semejanza $\frac{AD}{CD}=\frac{DE}{PE}$ se escribe como $\frac{d}{1}=\frac{1}{d-1}$, de donde $d$ cumple la ecuación $d^2-d-1=0$, de la que nos quedamos con la única solución positiva $d=\frac{1+\sqrt{5}}{2}$, la razón áurea. Ahora bien, el triángulo $ABQ$ de la figura es rectángulo y cumple $\angle BAQ=54$, luego \begin{align*}
\mathrm{sen}(54)&=BD=\frac{d}{2}=\frac{1+\sqrt{5}}{4},\\
\cos(54)&=AQ=\sqrt{1-BQ^2}=\sqrt{1-\left(\tfrac{1+\sqrt{5}}{4}\right)^2}=\frac{\sqrt{5-\sqrt{5}}}{2\sqrt{2}}.
\end{align*}
De esta forma, tenemos que el área del triángulo es
\[8\,\mathrm{sen}(54)\cos(54)=8\frac{1+\sqrt{5}}{4}\cdot\frac{\sqrt{5-\sqrt{5}}}{2\sqrt{2}}=\sqrt{10+2\sqrt{5}}.\]
Para ver qué ocurre con $0224$, pongamos $n=100a+10b+c$, con $0\leq a,b,c\leq 9$ respectivamente. Podemos hacer la multiplicación siguiente: \[\begin{array}{ccccc} &&a&b&c\\ &\times&a&b&c\\\hline &&ac&bc&c^2\\ &ab&b^2&bc&\\ a^2&ab&ac&&\\\hline a^2&2ab&b^2\!+\!2ac&2bc&c^2 \end{array}\] y ahora ir cuadrando las cifras desde las unidades a las centenas. Esto es bastante rutinario, pero hay que tener cuidado de tener en cuenta las llevadas (no se han escrito en la multiplicación anterior ya que dependen de los valores concretos de $a,b,c$). En las unidades tenemos que $c^2\equiv 4\ (\text{mód } 10)$, con soluciones $c=2$ y $c=8$.
Nota. Por ejemplo, si $n=1$, la respuesta es cualquier número natural
ya que podemos dar la vuelta a cuantos cuadrados $1\times 1$ deseemos.
Nota. La desigualdad de Jensen nos dice que si $f(x)$ es una función cóncava en un intervalo $[a,b]$ y tenemos puntos $x_1,\ldots,x_n\in [a,b]$ y pesos $w_1,\ldots,w_n\gt 0$, entonces \[\frac{w_1f(x_1)+w_2f(x_2)+\ldots+w_nf(x_n)}{w_1+w_2+\ldots+w_n}\leq f(\frac{w_1x_1+w_2x_2+\ldots+w_nx_n}{w_1+w_2+\ldots+w_n}).\]