Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1456
Encontrar todos los números naturales $x$ tales que el producto de sus dígitos (en notación decimal) es igual a $x^2-10x-22$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1453
En la succesión de potencias de 2 (escritas en el sistema decimal, comenzando con $2^1 = 2$) hay tres términos de una cifra, otros tres de dos cifras, otros tres de tres, cuatro de cuatro, tres de cinco, etc. Razonar claramente las respuestas a las cuestiones siguientes:
  1. ¿Puede haber solamente dos términos con un cierto número de cifras?
  2. ¿Puede haber cinco términos con el mismo número de cifras?
  3. ¿Puede haber cuatro términos de $n$ cifras, seguidos de cuatro con $n+1$ cifras?
  4. ¿Cuál es el número máximo de potencias consecutivas de 2 que pueden encontrarse sin que entre ellas haya cuatro con el mismo número de cifras?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1432
Un número de tres cifras se escribe $xyz$ en el sistema de base 7 y $zyx$ en el sistema de base 9 (es decir, sus dígitos aparecen en orden inverso). ¿Cuál es el número?
pistasolución 1info
Pista. El número es $7^2x+7y+z$ y también $9^2z+9y+x$, donde $x,y,z$ son dígitos entre $0$ y $6$.
Solución. La ecuación que nos da se escribe como \[49x+7y+z=81z+9y+x\ \Leftrightarrow\ 40z+y-24x=0.\] Por tanto, $y=8(3x-5z)$ es múltiplo de $8$, lo que nos lleva a que $y=0$ (ya que en base $7$ no puede haber un dígito $8$. Tenemos así que $3x=5z$, luego $x$ tiene que ser múltiplo de $5$ pero no puede ser $x=0$ (ya que el número tiene tres cifras) ni $x\geq 7$ y nos queda que $x=5$, de donde $z=3$. Tenemos así que el número es $503_{(7)}=305_{(9)}=248_{(10)}$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1412
Sean $k,m,n$ enteros positivos tales que $m+k+1$ es un número primo mayor que $n+1$. Sea $c_s=s(s+1)$. Demostrar que el producto \[(c_{m+1}-c_k)(c_{m+2}-c_k)\cdots(c_{m+n}-c_k)\] es divisible por el producto $c_1c_2\cdots c_n$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1398
Para cada entero $d$, definimos el número \[S_d=1+d+d^2+\ldots+d^{2006}.\] Hallar el último dígito de $S_0+S_1+S_2+\ldots+S_9$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre