Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1365
Encontrar un entero positivo $n$ de $1000$ cifras, todas distintas de cero, con la siguiente propiedad: es posible agrupar las cifras de $n$ en $500$ parejas de tal manera que si multiplicamos las dos cifras de cada pareja y sumamos los 500 productos obtenemos como resultado un número $m$ que es divisor de $n$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1363
Diremos que un entero positivo es tico si la suma de sus dígitos (en base 10) es múltiplo de 2003.
  1. Demostrar que existe un entero positivo $N$ tal que sus primeros 2003 múltiplos $N,2N,\ldots, 2003N$ son todos ticos.
  2. ¿Existe algún entero positivo $N$ tal que todos sus multiplos sean ticos?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1356
Dados dos números enteros no negativos $m$ y $n$, con $m\gt n$, se dirá que $m$ termina en $n$ si es posible borrar algunos dígitos de izquierda a derecha de $m$ para obtener $n$ (por ejemplo, $329$ termina en $9$ y en $29$ únicamente). Determine cuántos números de tres dígitos terminan en el producto de sus dígitos.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1352
La OMCC es una competición anual de matemáticas. En el año 2007 se lleva a cabo la novena olimpiada. ¿Para qué enteros positivos $n$ se cumple que $n$ divide al año en que se realiza la $n$-ésima olimpiada?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1351
Se dice que un entero positivo $N$ es interoceánico si, al descomponer en factores primos $N=p_1^{x_1}p_2^{x_2}\cdots p_k^{x_k}$, se cumple que \[x_1+x_2+\ldots+x_k=p_1+p_2+\ldots+p_k.\] Encontrar todos los números interoceánicos menores que $2020$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre