OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
APMO |
OMCC |
Retos UJA |
En resumen, hemos encontrado los diecisiete números que cumplen la condición del enunciado: 100, 101, 105, 110, 134, 143, 150, 203, 230, 302, 314, 320, 341, 413, 431, 501 y 510.
Hallar todos los enteros $a\gt 1$ tales que $2002$ está en $L(a)$.
Queda por ver que podemos emparejar los dígitos para obtener una suma de productos $m=999$. Para ello, hacemos $457$ parejas $(1,2)$, $29$ parejas $(1,1)$ y $14$ parejas $(2,2)$, lo que nos da \[m=457\cdot 1\cdot 2+29\cdot 1\cdot 1+14\cdot 2\cdot 2=999\] y hemos terminado.
Nota. Aunque los números aparecen sacados de la manga, en realidad sólo hay que hacer ciertos ajustes. Por ejemplo, si suponemos que hay $a$ grupos de tres unos y $b$ grupos de tres doses, tiene que cumplirse que $a+b=332$ y, para que $n$ sea múltiplo de $999$, tiene que ser $a$ múltiplo de $9$. Por otro lado, en los emparejamientos comenzamos poniendo $485$ parejas $(1,2)$ y $15$ parejas $(1,1)$, lo que nos da $m=985$; ahora basta darse cuenta de que cambiar dos parejas $(1,2)$ por una $(1,1)$ y otra $(2,2)$ aumenta $m$ en una unidad, por lo que habrá que hacer $14$ de tales cambios.