Demostrar que
\[\frac{(\mathrm{mcm}(a,b,c))^2}{\mathrm{mcm}(a,b)\,\mathrm{mcm}(b,c)\,\mathrm{mcm}(c,a)}=\frac{(\mathrm{mcd}(a,b,c))^2}{\mathrm{mcd}(a,b)\,\mathrm{mcd}(b,c)\,\mathrm{mcd}(c,a)}\]
para cualesquiera enteros positivos $a,b,c$.
pistasolución 1info
Pista. Razona lo que pasa para cada número primo por separado.
Solución. Sea $p$ un número primo y consideremos los exponentes enteros $x,y,z\geq 0$ de $p$ en la descomposición en factores primos de $a,b,c$, respectivamente. Podemos suponer además que $x\leq y\leq z$ sin perder generalidad. El exponente de $p$ en $(\operatorname{mcm}(a,b,c))^2$ es $2z$ y en $\operatorname{mcm}(a,b)\operatorname{mcm}(b,c)\operatorname{mcm}(c,a)$ es $y+2z$, luego este exponente en la fracción de la izquierda es $-y$. Por su parte, el exponente de $p$ en $(\operatorname{mcd}(a,b,c))^2$ es $2x$ y en $\operatorname{mcd}(a,b)\operatorname{mcd}(b,c)\operatorname{mcd}(c,a)$ es $2x+y$, luego en la fracción de la derecha vuelve a ser $-y$. Repitiendo esto para todo primo $p$ deducimos que ambas fracciones coinciden.