Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1048
Sea $n$ un número natural. Si la última cifra de $7^n$ es $3$, probar que la penúltima es $4$.
pistasolución 1info
Pista. Calcula las dos últimas cifras de $7^n$ para $n=0,1,2,3,\ldots$ hasta que encuentres un patrón.
Solución. La última cifra de $7^n$ es $1,7,9,3,1,7,9,3,\ldots$ para $n=0,1,2,3,4,5,6,7,\ldots$ y, como esta sólo depende de la última cifra de $7^{n-1}$, en cuanto una cifra se repite, la sucesión anterior se vuelve periódica. Deducimos así que $7^n$ tiene última cifra $3$ precisamente cuando $n=4k+3$ (ver la nota). Entonces, tenemos que \[7^{4k+3}=(7^4)^k\cdot 7^3=2401^k\cdot 343\] tendrá sus dos últimas cifras iguales a $43$ ya que $2041^k$ siempre terminará en $01$ para todo $k$.

Nota. Otra forma de ver la periodicidad de la última cifra es darse cuenta de que $7^4=2041\equiv 1\ (\text{mod }10)$, luego si dividimos $n$ entre $4$ y obtenemos que $n=4k+r$ con $0\leq r\leq 3$, se cumplirá que $7^n=(7^4)^k\cdot 7^r\equiv 1\cdot 7^r\equiv 7^r\ (\text{mod }10)$, luego las últimas cifras se repiten de $4$ en $4$. La solución también se puede terminar con el mismo cálculo observando que, de hecho, $7^4\equiv 1\ (\text{mod }100)$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1044
Sean $a\geq 1$ y $b\geq 1$ números naturales cuyo máximo común divisor y mínimo común múltiplo designamos por $D$ y $M$, respectivamente. Demostrar que \[D^2+M^2\geq a^2+b^2.\]
pistasolución 1info
Pista. Usa la relación $DM=ab$ para reescribir la desigualdad.
Solución. Usaremos la relación $DM=ab$ para escribir \begin{align*} D^2+M^2-a^2-b^2&=D^2-\frac{a^2b^2}{D^2}-a^2-b^2\\ &=\frac{D^4+a^2b^2-a^2D^2-b^2D^2}{D^2}\\ &=\frac{(a^2-D^2)(b^2-D^2)}{D^2}\geq 0. \end{align*} Aquí hemos usado que cualquier número es mayor o igual que un divisor suyo (en este caso, el máximo común divisor $D$ con el otro número). De la desigualdad anterior se deduce claramente la del enunciado.

Nota. La igualdad se alcanza sólo cuando $a=D$ o $b=D$, es decir, cuando $b$ es un múltiplo de $a$ o $a$ es un múltiplo de $b$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1038
Para cada entero positivo $n$, sea $S(n)$ la suma de sus dígitos. Decimos que $n$ tiene la propiedad P si los términos de la sucesión infinita \[\{n,S(n), S(S(n)), S(S(S(n))),\ldots\}\] son todos pares, y decimos que $n$ tiene la propiedad I si son todos impares. Demostrar que entre todos los enteros positivos $n$ tales que $1\leq n\leq 2017$ son más los que tienen la propiedad I que los que tienen la propiedad P.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1034
Sea $p$ un número primo impar y sea \[S_q=\frac{1}{2\cdot 3\cdot 4}+\frac{1}{5\cdot 6\cdot 7}+\ldots+\frac{1}{q(q+1)(q+2)},\] donde $q=\frac{3p-5}{2}$. Escribimos $\frac{1}{p}-2S_q$ en la forma $\frac{m}{n}$ siendo $m$ y $n$ enteros. Demostrar que $m\equiv n\ (\text{mod }p)$, es decir, $m$ y $n$ dan el mismo resto al ser divididos por $p$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1031
Determinar todos los números naturales $n$ para los que existe algún número natural $m$ verificando simultáneamente las siguientes dos propiedades:
  • El número $m$ tiene al menos dos cifras (en base 10), todas son distintas y ninguna es $0$.
  • El número $m$ es múltiplo de $n$ y cualquier reordenación de sus cifras es un múltiplo de $n$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre