OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
APMO |
OMCC |
Retos UJA |
Como el máximo común divisor de $m+n$ y $m^2+n^2$ es, en particular, un divisor común, tiene que ser $1$ o $2$. Será igual a $2$ cuando $m$ y $n$ tengan la misma paridad y $1$ cuando tengan distinta paridad.
Nota: $f^2(x)=f(f(x))$, $f^3(x)=f(f^2(x))=f(f(f(x)))$ y, en general, \[f^n(x)=f(f^{n-1}(x))=f(f(\ldots f(x))\ldots))\quad (n\text{ veces}).\]
Esto nos dice que, para cada $n\in\mathbb{N}$ podemos expresar $f^{n-1}(x)=x p_{n-1}(x)+1$ para cierto polinomio $g_{n-1}(x)$. Tenemos así que \begin{align*} \mathrm{mcd}(f(x),f^n(x))&=\mathrm{mcd}(f(x),f^{n-1}(f(x)))\\ &=\mathrm{mcd}(f(x),f(x) p_{n-1}(f(x))+1)=1. \end{align*}
Nota. El resultado es también cierto cambiando $f(x)=x^{1997}-x+1$ por cualquier polinomio $f(x)$ con coeficientes enteros y $f(0)=f(1)=1$. También es cierto que $f^n(y)$ y $f^m(y)$ son primos relativos para cualesquier $m,n\in\mathbb{N}$ (basta aplicar el enunciado a $x=f^{m-1}(y)$ con $n+1$ en lugar de $n$).
Por un lado, si existe tal punto en $OP$, esto quiere decir que existen $c,d\in\mathbb{N}$ y $0\lt\lambda\lt 1$ tales que $(c,d)=\lambda(a,b)$. En particular, $\lambda=\frac{c}{a}=\frac{d}{b}$ es un número racional. Supongamos que $\lambda=\frac{m}{n}$ como fracción irreducible, luego \[c=\frac{m}{n}a,\qquad d=\frac{m}{n}b,\] de forma que $n$ debe ser un divisor común a $a$ y $b$. Observemos que $n\gt 1$ ya que $0\lt \lambda\lt 1$, luego hemos probado que $a$ y $b$ no son primos entre sí. Recíprocamente, si $n\gt 1$ es un divisor común a $a$ y $b$, entonces el punto $(c,d)=(\frac{a}{n},\frac{b}{n})$ es un punto de coordenadas enteras en el segmento $OP$, lo que concluye la demostración.
Con esta información, el problema se traduce en ver cuántos números enteros $k$ entre $1$ y $1998$ son primos relativos con $1000$. Como $1000=2^3\cdot 5^3$, estamos buscando los valores de $k$ que no tienen factores primos $2$ ni $5$. De los $1998$ números considerados, hay $999$ múltiplos de $2$, $399$ múltiplos de $5$ y $199$ múltiplos de $10$ (¿sabrías contarlos rápidamente?). Por tanto, la cantidad de primos relativos con $1000$ (la solución al problema) es: \[1998-999-399+199=799\] (hay que añadir $199$ ya que estamos quitando los múltiplos de $10$ dos veces).
En el resto de casos $a=1$, $a=4$ y $a=9$, el propio $a$ es un cuadrado perfecto, luego tendremos que ver que el número $b$ formado sólo por unos no lo es. Por reducción al absurdo, si $b=m^2$ fuera un cuadrado perfecto, entonces la cifra de las unidades de $m$ será $1$ o $9$, luego $m=10k+1$ o bien $m=10k+9$ para cierto $k\geq 1$. Elevando al cuadrado tenemos que \[b=(10k+1)^2=100k^2+20k+1=20(5k^2+k)+1,\] luego $b$ es un múltiplo de $20$ más $1$, es decir, la cifra de las decenas de $b$ es par, lo que contradice que $b$ está formado sólo por unos. De la misma forma, \[(10k+9)^2=100k^2+180k+81=20(5k^2+9k+4)+1\] no puede estar formado sólo por unos.
Los únicos números naturales menores que $100$ cuyos cuadrados tienen repetida las cifras de las unidades y las decenas (y son no nulas) son $12$, $38$, $62$ y $88$, que cumplen que $12^2=144$, $38^2=1444$, $62^2=3844$ y $88^2=7744$. Hemos reducido el problema a buscar los números naturales $m$ tales que $m^2=44\ldots4=4\cdots 11\ldots1$. Esto exige que $\frac{m}{2}$ sea impar (ya que el cuadrado de un número par es par). Podemos escribir $\frac{m}{2}=2l+1$ para cierto número $l$, de donde $(2l+1)^2=11\ldots1$ o bien $4l(l+1)=11\ldots10$. Esto no es posible porque los múltiplos de $4$ tienen sus dos últimos dígitos $00$ o múltiplo de $4$, pero $10$ no es múltiplo de $4$.
Nota. Esta es una solución aportada por Samuel Gómez Moreno.