Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 926
Sea $n$ un entero positivo. Dado un conjunto $\{a_1,a_2,\ldots,a_n\}$ de enteros entre $0$ y $2n-1$ inclusive, a cada uno de sus $2^n$ subconjuntos se les asigna la suma de sus elementos (se considera que el subconjunto vacío tiene suma $0$) Si estas $2^n$ sumas dejan distintos residuos al dividirlas entre $2^n$, se dice que el conjunto $\{a_1, a_2,\ldots,a_n\}$ es $n$-completo. Determinar, para cada $n$, la cantidad de conjuntos $n$-completos.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 925
Un entero positivo es bisumado si se puede escribir como suma de dos enteros positivos que tengan la misma suma de sus dígitos. Por ejemplo, 2012 es bisumado pues $2012 = 2005+7$ y tanto $2005$ como $7$ tienen suma de dígitos igual a $7$. Encontrar todos los enteros positivos que no son bisumados.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 921
Hallar todos los enteros positivos $n$ y $k$ tales que \[(n+1)^n=2n^k+3n+1.\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 917
Consideremos el número entero positivo $n=2^r−16^s$, donde $r$ y $s$ son también enteros positivos. Hallar las condiciones que deben cumplir $r$ y $s$ para que el resto de la división de $n$ por $7$ sea $5$. Hallar el menor número $n$ que cumple esta condición.
pistasolución 1info
Pista. Estudia los restos de dividir $2^r$ y $16^s=2^{4s}$ módulo $7$.
Solución. Los restos de dividir $2^r$ entre $7$ se van repitiendo periódicamente y podemos reflejarlos en la siguiente tabla: \[\begin{array}{c|ccccccccccccccccc} r&1&2&3&4&5&6&7&8&9&10&11&12&13&14&15&16&\cdots\\\hline 2^r\ (\text{mod }7)&2&4&1&2&4&1&2&4&1&2&4&1&2&4&1&2&\cdots \end{array}\] Los restos de $16^s=2^{4s}$ también son periódicos al incrementar $s$ y simplemente hay que recorrer la tabla anterior saltando de cuatro en cuatro: \[\begin{array}{c|ccccc} s&1&2&3&4&\cdots\\\hline 16^s\ (\text{mod }7)&2&4&1&2&\cdots \end{array}\] Otra forma de ver que las dos tablas son realmente la misma es darse cuenta de que $16^s=8^s2^s\equiv 1^s2^2\equiv 2^s\ (\text{mod }7)$, o directamente usando que $16\equiv 2\ (\text{mod }7)$. Además, para obtener $5$ como diferencia de dos números de la tabla sólo tenemos la posibilidad $2-4\equiv 5\ (\text{mod }7)$. Como los restos se repiten de tres en tres, la respuesta a la primera pregunta es que $r\equiv 1\ (\mathrm{mod }3)$ y $s\equiv 2\ (\text{mod }3)$.

Un ejemplo de número positivo que cumple estas condiciones se tiene para $r=10$ y $s=2$, lo que nos da \[n=2^{10}-16^2=1024-256=768.\] Este es el número positivo más pequeño que se obtiene con $s=2$. Ahora bien, si $s\geq 5$ (que es el siguiente número congruente con $2$ módulo $3$), entonces para que $n=2^r-16^s=2^r-2^{4s}$ sea positivo, tiene que ser $r\geq 4s+1$, lo que nos da $n\geq 2^{4s+1}-2^{4s}=2^{4s}\geq 16^5\gt 768$. Deducimos por tanto que $n=768$ es el menor entero que cumple la condición del enunciado.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 902
Encontrar todos los enteros positivos $n$ para los cuales existen tres números enteros no nulos $x, y, z$ tales que \[x+y+z=0\qquad\text{y}\qquad\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{n}.\]
pistasolución 1info
Pista. Sustituye $z=-x-y$ y usa la expresión resultante para probar que $n$ es necesariamente par.
Solución. Sustituyendo $z=-x-y$, obtenemos que \[\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{y}-\frac{1}{x+y}=\frac{x^2+xy+y^2}{xy(x+y)}.\qquad (\star)\] Si esta expresión es igual al inverso de un natural $n$, entonces \[xy(x+y)=n(x^2+xy+y^2).\] Veamos que $n$ es par distinguiendo casos:
  • Si $x$ es impar o $y$ es impar, entonces $xy(x+y)$ es par mientras que $x^2+xy+y^2$ es impar, luego $n$ tiene que ser par.
  • Si $x$ e $y$ son ambos pares, entonces sea $2^a$ es la mayor potencia de $2$ que divide tanto a $x$ como a $y$. Tenemos que $2^{3a}$ divide a $xy(x+y)$, pero el factor $x^2+xy+y^2$ es divisible solo por $2^{2a}$. Por tanto $2^a$ divide a $n$, que tiene que ser par.

El problema habrá terminado si probamos que todo entero par se puede escribir de esta manera. Para que el denominador en $(\star)$ sea igual a $2$, tenemos que elegir $x=y=1$, luego $z=-2$. Esto nos da la igualdad $\frac{1}{1}+\frac{1}{1}+\frac{1}{-2}=\frac{3}{2}$, que no es solución pero podemos dividir por $3$ ambos miembros para obtener $\frac{1}{3}+\frac{1}{3}+\frac{1}{-6}=\frac{1}{2}$, luego $n=2$ es solución para $(x,y,z)=(3,3,-6)$. Obtenemos el resto de números pares $n=2k$ si tomamos $(x,y,z)=(3k,3k,-6k)$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre