Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2717 problemas y 972 soluciones.
Problema 994
Determine todos los pares $(a,b)$ de números enteros que verifican \[\left(b^2+7(a-b)\right)^2=a^3b.\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 990
El número $125$ se puede representar como suma de varios números naturales que son mayores que $1$ y coprimos dos a dos. Encuentre el máximo número de sumandos que puede tener tal representación.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 988
Sean $p$ y $n$ enteros positivos tales que $p$ es primo, $n\geq p$ y $1+np$ es un cuadrado perfecto. Probar que $n+1$ es suma de $p$ cuadrados perfectos no nulos.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 968
Para cada entero positivo $n$, se define $s(n)$ como la suma de los dígitos de $n$. Determinar el menor entero positivo $k$ tal que \[s(k) = s(2k) = s(3k) =\ldots= s(2013k) = s(2014k).\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 966
El conjunto $M$ está formado por los números enteros de la forma $a^2+13b^2$, con $a$ y $b$ distintos de cero.
  1. Demostrar que el producto de dos elementos cualesquiera de $M$ es un elemento de $M$.
  2. Determinar razonadamente si existen infinitos pares de enteros $(x,y)$ tales que $x+y$ no pertenece a $M$ pero $x^{13}+y^{13}$ sí pertenece a $M$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre