| OME Local |
| OME Andaluza |
| OME Nacional |
| OIM |
| IMO |
| EGMO |
| USAMO |
| ASU |
| APMO |
| OMCC |
| Retos UJA |
Finalmente, si $q=b+d$, entonces $v=0$, luego las desigualdades arriba probadas nos dicen que $0\geq u\geq 0$ y, por tanto, $u=0$ y $p=a+c$, demostrando así el apartado (b).
Por tanto, $3n^2+2n+2$ no es congruente con $0$, $1$ ó $4$ para ningún valor de $n\in\mathbb{Z}$ y hemos terminado.
Supongamos ahora que se da la igualdad, con lo que tenemos dos igualdades para trabajar: $ab=1+n^2$ y $(a-b)^2=4n-3$. Entonces, $(a+b)^2=(a-b)^2+4ab=(2n+1)^2$, luego $a+b=2n+1$. Por otro lado, tenemos que $4n-3$ tiene que ser un cuadrado impar, pongamos $(2m+1)^2$ para cierto entero $m$, de donde $n=m^2+m+1$. Finalmente, de las ecuaciones $a+b=2n+1$ y $a-b=\sqrt{4n-3}$, despejamos $a$ y $b$ en función de $m$. Tenemos así que \begin{align*} n&=m^2+m+1,\\ a&=m^2+2m+2,\\ b&=m^2+1, \end{align*} para cierto entero $m\geq 0$. Como estas soluciones cumplen la igualdad para todo $m$, deducimos que son las únicas.
Hay varias formas de ver que $x^2+x+1$ es un factor de $x^{2a}+x^a+1$: