| OME Local |
| OME Andaluza |
| OME Nacional |
| OIM |
| IMO |
| EGMO |
| USAMO |
| ASU |
| APMO |
| OMCC |
| Retos UJA |
Nota. Esto mismo prueba que $a+c$ es un cuadrado perfecto. Por otro lado, la condición del enunciado también se escribe como $(c-b)(a-b)=b^2$, lo que nos dice que $b-c$ es otro cuadrado perfecto. Además, como $a-b$ y $c-b$ son cuadrados perfectos (y, en particular, positivos), tenemos que $a>c>b$.
Nota. Esta misma solución se puede adaptar para demostrar que los múltiplos de un número abundante son también abundantes e incluso los múltiplos de un número perfecto son también abundantes.
Sustituyendo estos valores de $m$ en la ecuación de segundo grado para $k$, obtenemos las siguientes posibilidades: \[k=0,\hspace{1cm}k=p,\hspace{1cm}k=\left(\frac{p+1}{2}\right)^2,\hspace{1cm}k=-\left(\frac{p-1}{2}\right)^{2}.\] Las dos primeras son enteras sea cual sea el primo $p$ pero la tercera y la cuarta sólo cuando $p$ es impar, es decir, para $p\geq 3$. Si no consideramos el cero como número natural, tenemos que descartar las dos primeras.