Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1980
Sea $P = A_1A_2\ldots A_k$ un polígono convexo en el plano. Los vértices $A_1, A_2,\ldots, A_k$ tienen coordenadas enteras y se encuentran sobre una circunferencia. Sea $S$ el área de $P$. Sea $n$ un entero positivo impar tal que los cuadrados de las longitudes de los lados de $P$ son todos números enteros divisibles por $n$. Demostrar que $2S$ es un entero divisible por $n$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1971
Determinar todas las ternas $(a,b,c)$ de enteros positivos tales que cada uno de los números $ab-c,bc-a,ca-b$ es una potencia de $2$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1958
Demostrar que, para cualquier par de enteros positivos $k$ y $n$, existen $k$ enteros positivos $m_1, m_2,\ldots, m_k$ (no necesariamente distintos) tales que \[1+\frac{2^k-1}{n}=\left(1+\frac{1}{m_1}\right)\left(1+\frac{1}{m_2}\right)\cdots \left(1+\frac{1}{m_k}\right).\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1934
Sea $n$ un entero positivo y sean $a_1,\ldots,a_k$ ($k\geq 2$) enteros distintos del conjunto $\{1,\ldots,n\}$, tales que $n$ divide a $a_i(a_{i+1}-1)$, para $i=1,\ldots,k-1$. Demostrar que $n$ no divide a $a_k(a_1-1)$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1930
Demostrar que existen infinitos números enteros positivos $n$ tales que $n^2+1$ tiene un divisor primo mayor que $2n+\sqrt{2n}$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre