Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 2012
Sea $ABC$ un triángulo acutángulo y sea $D$ el pie de la altura trazada desde $C$. La bisectriz de $\angle ABC$ intersecta a $CD$ en $E$ y vuelve a intersectar al circuncírculo $\omega$ de $ADE$ en $F$. Si $\angle ADF=45^\circ$, probar que $CF$ es tangente a $\omega$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2007
Sean $D$ y $E$ puntos en los lados $AB$ y $AC$ de un triángulo $ABC$, respectivamente, y tales que $DB = BC = CE$. Sean $F$ el punto de intersección de las rectas $CD$ y $BE$, $I$ el incentro del triángulo $ABC$, $H$ el ortocentro del triángulo $DEF$ y $M$ el punto medio del arco $BAC$ del circuncírculo del triángulo $ABC$. Demuestra que $I$, $H$ y $M$ son colineales.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2004
Sea $\Omega$ la circunferencia circunscrita del triángulo $ABC$ y sea $\omega$ la circunferencia tangente a los lados $AB$ y $BC$ que además es tangente internamente a $\Omega$ en un punto $P$. Una recta paralela a $AB$ que corta el interior del triángulo $ABC$ es tangente a $\omega$ en el punto $Q$. Demostrar que $\angle ACP=\angle QCB$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2000
Extendemos el lado $BC$ del triángulo $ABC$ hasta un punto $D$ más allá de $C$ de forma que $CD=BC$. El lado $CA$ se extiende también más allá de $A$ hasta un punto $E$ tal que $AE=2CA$. Demostrar que si $AD=BE$, entonces el triángulo $ABC$ es rectángulo.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1999
Sea $I$ el incentro del triángulo acutángulo $ABC$ con $AB\neq AC$. La circunferencia inscrita (o incírculo) $\omega$ de $ABC$ es tangente a los lados $BC$, $CA$ y $AB$ en $D$, $E$ y $F$, respectivamente. La recta que pasa por $D$ y es perpendicular a $EF$ corta a $\omega$ nuevamente en $R$. La recta $AR$ corta a $\omega$ nuevamente en $P$. Las circunferencias circunscritas (o circuncírculos) de los triángulos $PCE$ y $PBF$ se cortan nuevamente en $Q$. Demostrar que las rectas $DI$ y $PQ$ se cortan en la recta que pasa por $A$ y es perpendicular a $AI$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre