Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1995
En el triángulo $ABC$, el punto $A_1$ está en el lado $BC$ y el punto $B_1$ está en el lado $AC$. Sean $P$ y $Q$ puntos en los segmentos $AA_1$ y $BB_1$, respectivamente, tales que $PQ$ es paralelo a $AB$. Sea $P_1$ un punto en la recta $PB_1$ distinto de $B_1$, con $B_1$ entre $P$ y $P_1$, y $\angle PP_1C = \angle BAC$. Análogamente, sea $Q_1$ un punto en la recta $QA_1$ distinto de $A_1$, con $A_1$ entre $Q$ y $Q_1$, y $\angle CQ_1Q = \angle CBA$. Demostrar que los puntos $P, Q, P_1, Q_1$ son concíclicos.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1993
Un cuadrilátero convexo $ABCD$ satisface $AB\cdot CD=BC\cdot DA$. El punto $X$ en el interior de $ABCD$ es tal que \[\angle XAB = \angle XCD\qquad \text{y}\qquad \angle XBC = \angle XDA.\] Demostrar que $\angle BXA + \angle DXC = 180^\circ$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1988
Sea $\Gamma$ la circunferencia circunscrita al triángulo acutángulo $ABC$. Los puntos $D$ y $E$ están en los segmentos $AB$ y $AC$, respectivamente, y son tales que $AD=AE$. Las mediatrices de $BD$ y $CE$ cortan a los arcos menores $AB$ y $AC$ de $\Gamma$ en los puntos $F$ y $G$, respectivamente. Demostrar que las rectas $DE$ y $FG$ son paralelas (o son la misma recta).
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1985
Sean $R$ y $S$ puntos distintos sobre la circunferencia $\Omega$ tales que $RS$ no es un diámetro de $\Omega$. Sea $\ell$ la recta tangente a $\Omega$ en $R$. El punto $T$ es tal que $S$ es el punto medio del segmento $RT$. El punto $J$ se elige en el arco menor $RS$ de $\Omega$ de manera que $\Gamma$, la circunferencia circunscrita al triángulo $JST$, corta a $\ell$ en dos puntos distintos. Sea $A$ el punto común de $\Gamma$ y $\ell$ más cercano a $R$. La recta $AJ$ corta por segunda vez a $\Omega$ en $K$. Demostrar que la recta $KT$ es tangente a $\Gamma$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1978
El triángulo $BCF$ es rectángulo en $B$. Sea $A$ el punto de la recta $CF$ tal que $FA = FB$ y $F$ está entre $A$ y $C$. Se elige el punto $D$ de modo que $DA = DC$ y $AC$ es bisectriz del ángulo $\angle DAB$. Se elige el punto $E$ de modo que $EA = ED$ y $AD$ es bisectriz del ángulo $\angle EAC$. Sea $M$ el punto medio de $CF$. Sea $X$ el punto tal que $AMXE$ es un paralelogramo (con $AM$ paralela a $EX$ y $AE$ paralela a $MX$). Demostrar que las rectas $BD$, $FX$ y $ME$ son concurrentes.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre