Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1960
Supongamos que el excírculo del triángulo $ABC$ opuesto al vértice $A$ es tangente al lado $BC$ en el punto $A_1$. Análogamente, se definen los puntos $B_1$ en $CA$ y $C_1$ en $AB$, utilizando los excírculos opuestos a $B$ y $C$, respectivamente. Supongamos que el circuncentro del triángulo $A_1B_1C_1$ pertenece a la circunferencia que pasa por los vértices $A$, $B$ y $C$. Demostrar que el triángulo $ABC$ es rectángulo.

Nota. El excírculo del triángulo $ABC$ opuesto al vértice $A$ es la circunferencia que es tangente al segmento $BC$, a la prolongación del lado $AB$ más allá de $B$, y a la prolongación del lado $AC$ más allá de $C$. Análogamente se definen los excírculos opuestos a los vértices $B$ y $C$.

Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1956
Sea $ABC$ un triángulo tal que $\angle BCA = 90^\circ$, y sea $D$ el pie de la altura desde $C$. Sea $X$ un punto interior del segmento $CD$. Sea $K$ el punto en el segmento $AX$ tal que $BK = BC$. Análogamente, sea $L$ el punto en el segmento $BX$ tal que $AL = AC$. Sea $M$ el punto de intersección de $AL$ y $BK$. Demostrar que $MK = ML$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1952
Dado un triángulo $ABC$, el punto $J$ es el centro del excírculo opuesto al vértice $A$. Este excírculo es tangente al lado $BC$ en $M$, y a las rectas $AB$ y $AC$ en $K$ y $L$, respectivamente. Las rectas $LM$ y $BJ$ se cortan en $F$ y las rectas $KM$ y $CJ$ se cortan en $G$. Sea $S$ el punto de intersección de las rectas $AF$ y $BC$ y sea $T$ el punto de intersección de las rectas $AG$ y $BC$. Demostrar que $M$ es el punto medio de $ST$.

Nota. El excírculo de $ABC$ opuesto al vértice $A$ es la circunferencia que es tangente al segmento $BC$, a la prolongación del lado $AB$ más allá de $B$ y a la prolongación del lado $AC$ más allá de $C$.

Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1951
Sea $ABC$ un triángulo acutángulo cuya circunferencia circunscrita es $\Gamma$. Sea $\ell$ una recta tangente a $\Gamma$ y sean $\ell_a$, $\ell_b$ y $\ell_c$ las rectas que se obtienen al reflejar $\ell$ con respecto a las rectas $BC$, $CA$ y $AB$, respectivamente. Demostrar que la circunferencia circunscrita del triángulo determinado por las rectas $\ell_a$, $\ell_b$ y $\ell_c$ es tangente a la circunferencia $\Gamma$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1943
Sean $\Gamma$ la circunferencia circunscrita al triángulo $ABC$ y $P$ un punto en el interior del triángulo. Las rectas $AP$, $BP$ y $CP$ cortan de nuevo a $\Gamma$ en los puntos $K$, $L$ y $M$, respectivamente. La recta tangente a $\Gamma$ en $C$ corta a la recta $AB$ en $S$. Si se tiene que $SC = SP$, demostrar que $MK = ML$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre