Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1925
En un triángulo $ABC$ la bisectriz del ángulo $\angle BCA$ corta a la circunferencia circunscrita en un punto $R$ ($R\neq C$), a la mediatriz de $BC$ en $P$ y a la mediatriz de $AC$ en $Q$. El punto medio de $BC$ es $K$ y el punto medio de $AC$ es $L$. Demostrar que los triángulos $RPK$ y $RQL$ tienen áreas iguales.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1923
Se consideran cinco puntos $A$, $B$, $C$, $D$ y $E$ tales que $ABCD$ es un paralelogramo y $BCED$ es un cuadrilátero cíclico y convexo. Sea $\ell$ una recta que pasa por $A$. Supongamos que $\ell$ corta al segmento $DC$ en un punto interior $F$ y a la recta $BC$ en $G$. Supongamos también que $EF=EG= EC$. Demostrar que $\ell$ es la bisectriz del ángulo $\angle DAB$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1916
Sea $ABC$ un triángulo y sea $I$ el centro de su circunferencia inscrita. Sea $P$ un punto en el interior del triángulo tal que \[\angle PBA + \angle PCA = \angle PBC + \angle PCB.\] Demostrar que $AP\geq AI$ y la igualdad se alcanza si y solo si $P=I$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1914
Sea $ABCD$ un cuadrilátero convexo que tiene los lados $BC$ y $AD$ iguales y no paralelos. Sean $E$ y $F$ puntos en los lados $BC$ y $AD$, respectivamente, que satisfacen $BE=DF$. Las rectas $AC$ y $BD$ se cortan en $P$, las rectas $BD$ y $EF$ se cortan en $Q$ y las rectas $EF$ y $AC$ se cortan en $R$. Consideremos todos los triángulos $PQR$ que se forman cuando $E$ y $F$ varían. Demuestre que las circunferencias circunscritas a esos triángulos tienen en común otro punto además de $P$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1910
Se eligen seis puntos en los lados de un triángulo equilátero $ABC$: $A_1$ y $A_2$ en $BC$, $B_1$ y $B_2$ en $CA$ y $C_1$ y $C_2$ en $AB$. Estos puntos son los vértices de un hexágono convexo $A_1A_2B_1B_2C_1C_2$ cuyos lados son todos iguales. Demostrar que las rectas $A_1B_2$, $B_1C_2$ y $C_1A_2$ son concurrentes.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre