Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1872
En un cuadrilátero convexo $ABCD$, las diagonales $AC$ y $BD$ son perpendiculares y los lados opuestos $AB$ y $CD$ no son paralelos. Supongamos que el punto $P$ en el que se cortan las mediatrices de $AB$ y $DC$ es interior a $ABCD$. Demostrar que $ABCD$ es cíclico si y sólo si las triángulos $ABP$ y $CDP$ tienen la misma área.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1867
Sea $ABC$ un triángulo cuyo ángulo menor es el del vértice $A$. Los puntos $B$ y $C$ dividen a la circunferencia circunscrita del triángulo en dos arcos y supongamos que $U$ es un punto en el arco que no contiene a $A$. Las mediatrices de $AB$ y $AC$ cortan a la recta $AU$ en $V$ y $W$, respectivamente, y las rectas $BV$ y $BW$ se cortan en $T$. Demostrar que \[AU=TB+TC.\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1866
Se considera el plano como un tablero de ajedrez infinito en el que las casillas están coloreadas de blanco y negro de forma alternada y los vértices de las casillas son los puntos de coordenadas enteras. Para cada par de enteros positivos $m$ y $n$, consideremos un triángulo rectángulo cuyos vértices tienen coordenadas enteras y cuyos catetos tienen longitudes $m$ y $n$ y están contenidos en los ejes de la cuadrícula.

Sea $S_1$ el área total de la parte negara del triángulo y $S_2$ el área total de la parte blanca. Definimos entonces \[f(m,n)=|S_1-S_2|.\]

  1. Calcular $f(m,n)$ para todos los enteros positivos $m$ y $n$ que son ambos pares o ambos impares.
  2. Demostrar que $f(m,n)\leq\frac{1}{2}\max\{m,n\}$ para todo $m$ y $n$.
  3. Probar que no hay ninguna constante $C$ tal que $f(m,n)\lt C$ para todo $m$ y $n$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1861
Sea $P$ un punto del interior del triángulo $ABC$ tal que \[\angle APB-\angle ACB=\angle APC-\angle ABC.\] Sean $D$ y $E$ los incentros de los triángulos $APB$ y $APC$, respectivamente. Demostrar que las rectas $AP$, $BD$ y $CE$ tienen un punto en común.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1857
Determinar todos los enteros $n\gt 3$ para los que existen $n$ puntos $A_1,A_2,\ldots,A_n$ en el plano tales que no hay tres alineados, y números reales $r_1,r_2,\ldots,r_n$ tales que el area del triángulo $A_iA_jA_k$ es igual a $r_i+r_j+r_k$ para todo $1\leq i\lt j\lt k\leq n$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre