Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
—20
Problema 2370
Sea $A_1$ un punto en el interior de un triángulo equilátero $ABC$ y $A_2$ un punto en el interior del triángulo $A_1BC$. Demostrar que \[\mathrm{I.Q.}(A_1BC)\gt \mathrm{I.Q.}(A_2BC),\] donde $\mathrm{I.Q.}(F)=\mathrm{Área}(F)/\mathrm{Perímetro}(F)^2$ representa el cociente isoperimétrico de una figura $F$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2366
Un polígono convexo tiene $n$ lados. Cada uno de sus vértices está unido por un segmento a un punto $P$ que no está en el mismo plano que el polígono. Si $A,B,C$ son vértices adyacentes del polígono, consideremos el ángulo que forman los planos $PAB$ y $PBC$. Si la suma de los $n$ ángulos obtenidos de esta forma coincide con la suma de los $n$ ángulos interiores del polígono, demostrar que $n=3$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2363
Demostrar que si $n$ no es un múltiplo de $3$, entonces el ángulo $\frac{\pi}{n}$ puede trisecarse mediante regla y compás.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2361
Si un tetraedro admite una esfera inscrita que es tangente a cada una de sus caras en su circuncentro, demostrar que el tetraedro es regular.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 2348
Consideremos la parábola $y=x^2$ dibujada en un plano donde se han borrado los ejes de coordenadas. ¿Es posible recuperar dichos ejes mediante regla y compás?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre