Sean $C$ y $C'$ dos circunferencias concéntricas de radios $r$ y $r'$, respectivamente. Determinar cuánto ha de valer el cociente $r'/r$ para que en la corona limitada por $C$ y $C'$ existan ocho circunferencias $C_1,C_2,\ldots,C_8$ que sean tangentes a $C$ y $C'$ y también que cada $C_i$ sea tangente exterior a $C_{i+1}$ para $1\leq i\leq 7$ y $C_8$ sea tangente exterior a $C_1$.
Sin pistas
Sin soluciones
infoDadas tres circunferencias de radios $r$, $r'$ y $r''$, cada una tangente exteriormente a las otras dos, calcular el radio del círculo inscrito al triángulo cuyos vértices son los centros de las tres circunferencias.
pistasolución 1info
Pista. Utiliza que el área de un triángulo es igual a su semiperímetro multiplicado por el radio de su circunferencia inscrita.
Solución. Los lados del triángulo son $a=r+r'$, $b=r'+r''$ y $c=r''+r$, luego el radio de su circunferencia inscrita $\rho$ puede calcularse mediante la fórmula $S=\rho p$, siendo $S$ el área del triángulo y $p=\frac{1}{2}(a+b+c)=r+r'+r''$ su semiperímetro. Usando la fórmula de Herón, tenemos que
\[\rho=\frac{S}{p}=\frac{\sqrt{p(p-a)(p-b)(p-c)}}{p}=\sqrt{\frac{r\cdot r'\cdot r''}{r+r'+r''}}.\]
Dadas dos rectas paralelas $r$ y $s$ y un punto $P$ sobre el plano que las contiene y no está sobre ellas. Determinar un triángulo equilátero que tenga por vértice el punto $P$ y los otros dos uno sobre cada una de las dos rectas.
pistasolución 1info
Pista. Usar una rotación de $60^\circ$ puede ser muy útil.
Solución. Consideremos una rotación de $60^\circ$ con centro en $P$ y sea $r'$ la imagen de $r$ por dicha rotación. Como $r'$ y $s$ no son paralelas, se cortarán en un cierto punto $Q'$ de $s$, que será el rotado de un cierto punto $Q$ de $r$ por construcción. Se tiene entonces que $PQQ'$ es el triángulo equilátero que buscamos.
Nota. Para cualquier punto $P$ hay exactamente dos triángulos en las condiciones dadas: el que se obtiene girando en sentido horario y el que se obtiene girando en sentido antihorario.