Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1544
Tenemos un sólido en el espacio que cumple que sus proyecciones ortogonales sobre dos planos distintos son círculos. Demostrar que ambos círculos tienen el mismo radio.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1539
  1. Sea $A_1A_2A_3$ un triángulo. Se eligen puntos $B_1,B_2,B_3$ en $A_1A_2,A_2A_3,A_3A_1$, respectivamente, y puntos $D_1,D_2,D_3$ en $A_3A_1,A_1A_2,A_2A_3$, respectivamente. Se definen los puntos $C_1,C_2,C_3$ para que $A_1B_1C_1D_1$, $A_2B_2C_2D_2$ y $A_3B_3C_3D_3$ sean paralelogramos. Demostrar que, si las rectas $A_1C_1,A_2C_2,A_3C_3$ son concurrentes, entonces \[A_1B_1\cdot A_2B_2\cdot A_3B_3=A_1D_1\cdot A_2D_2\cdot A_3D_3.\]
  2. Sea $A_1A_2\ldots A_n$ un polígno convexo y elegimos puntos $B_i$ en $A_iA_{i+1}$ y puntos $D_i$ en $A_{i-1}A_i$ para todo $1\leq i\leq n$ (siendo $A_{n+1}=A_1$. Se eligen los puntos $C_i$ para que $A_iB_iC_iD_i$ sean paralelogramos. Demostrar que, si las rectas $A_iC_i$ son concurrentes, entonces \[A_1B_1\cdot A_2B_2\cdots A_nB_n=A_1D_1\cdot A_2D_2\cdots A_nD_n.\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1535
Se tienen dos rectángulos congruentes en el plano de área $A$. Si sus lados se cortan en un total de $8$ puntos, demostrar que el área de la intersección es mayor que $\frac{A}{2}$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1533
Sea $ABC$ un triángulo y llamemos $I$ a su incentro. Sea $M$ el punto medio de $BC$ y supongamos que $IM$ y $AH$ se cortan en un punto $E$. Demostrar que $AE$ es igual al radio de la circunferencia inscrita.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1530
Sea $ABC$ un triángulo acutángulo y supongamos que la bisectriz $AD$, la mediana $BM$ y la altura $CH$ concurren en un punto. Demostrar que $\angle BAC\gt 45^\circ$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre