Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1443
Sea $\gamma$ una semicircunferencia de diámetro $AB$. Se construye una línea poligonal con origen en $A$ y que tiene sus vértices alternativamente en el diámetro $AB$ y en la semicircunferencia $\gamma$, de modo que sus lados forman ángulos iguales $\alpha$ con el diámetro, como se muestra en la figura.
  1. Hallar los valores del ángulo $\alpha$ para que la poligonal pase por el otro extremo $B$ del diámetro.
  2. La longitud total de la poligonal, en el caso que termine en $B$, en función de la longitud $d$ del diámetro y del ángulo $\alpha$.
imagen
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1440problema obsoleto
Determinar los polos de las inversiones que transforman cuatro puntos $A,B,C,D$ alineados en este orden en cuatro puntos $A',B',C',D'$ que sean vértices de un rectángulo y tales que $A'$ y $C'$ sean vértices opuestos.
pista
Sin soluciones
info
Pista. Fíjate en que las rectas $A'C'$ y $B'D'$ son diámetros que cortan perpendicularmente a la circunferencia circunscrita al rectángulo $A'B'C'D'$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1435
La longitud de la hipotenusa $BC$ de un triángulo rectángulo $ABC$ es $a$ y sobre ella se toman los puntos $M$ y $N$ tales que $BM = NC = k$, con $k\lt\frac{a}{2}$. En función de estos datos $a$ y $k$, calcular:
  1. El valor de la suma de los cuadrados de las longitudes $AM$ y $AN$.
  2. La razón de las áreas de los triángulos $ABC$ y $AMN$.
  3. El área encerrada por la circunferencia que pasa por los puntos $A$ , $M'$ y $N'$, siendo $M'$ la proyección ortogonal de $M$ sobre $AC$ y $N'$ la de $N$ sobre $AB$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1433
Dado un pentágono regular, se considera el pentágono convexo delimitado por sus diagonales. Se pide calcular:
  1. La relación de semejanza entre los dos pentágonos convexos.
  2. La relación de sus áreas.
  3. La razón de la homotecia que transforma el primero en el segundo.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1430
Sea $\gamma_1$ una circunferencia de radio $r$ y $P$ un punto exterior que dista $a$ de su centro. Se suponen construidas las dos rectas tangentes a $\gamma_1$ desde $P$ y sea $\gamma_2$ una circunferencia de radio menor que el de $\gamma_1$ tangente a esas dos rectas y a $\gamma_1$. En general, una vez construida la circunferencia $\gamma_n$, se construye otra circunferencia $\gamma_{n+1}$ de radio menor que el de $\gamma_n$, tangente a las dos rectas citadas y a $\gamma_n$. Determinar
  1. El radio de $\gamma_2$.
  2. La expresión general del radio de $\gamma_n$.
  3. El límite de la suma de las longitudes de las circunferencias $\gamma_1,\gamma_2,\ldots,\gamma_n,\ldots$
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre