Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1276
Sea $D$ un punto interior de un triángulo acutángulo $ABC$, con $AB\gt AC$, de forma que $\angle DAB = \angle CAD$. Un punto $E$ en el segmento $AC$ satisface $\angle ADE = \angle BCD$, un punto $F$ en el segmento $AB$ satisface $\angle FDA = \angle DBC$, y un punto $X$ en la recta $AC$ satisface $CX=BX$. Sean $O_1$ y $O_2$ los circuncentros de los triángulos $ADC$ y $EXD$ respectivamente. Probar que las rectas $BC$, $EF$ y $O_1O_2$ son concurrentes.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1268
Consideremos el cuadrilátero convexo $ABCD$. Supongamos que un punto $P$ en el interior de $ABCD$ cumple las siguientes razones: \[\angle PAD:\angle PBA:\angle DPA=1:2:3=\angle CBP:\angle BPA:\angle BPC.\] Demostrar que las siguientes tres rectas concurren en un punto: la bisectriz interior del ángulo $\angle ADP$, la bisectriz interior del ángulo $\angle PCB$ y la mediatriz del segmento $AB$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1267
Se tienen dos círculos tangentes y un punto $P$ en su tangente común perpendicular a la recta que une sus centros. Construir con regla y compás todos los círculos que son tangentes a estos dos círculos y que pasan por el punto $P$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1263
Sea $G$ el baricentro de un triángulo $ABC$ y $M$ el punto medio de $BC$. Sea $X$ un punto de $AB$ e $Y$ un punto de $AC$ tales que $X,Y,G$ están alineados y las rectas $XY$ y $BC$ sn paralelas. Supongamos que $XC$ y $GB$ se cortan en $Q$ y que $YB$ y $GC$ se cortan en $P$. Demostrar que los triángulos $MPQ$ y $ABC$ son semejantes.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1258
Dado un triángulo $ABC$, sean $D,E,F$ los puntos medios de $BC,AC,AB$, respectivamente, y sea $G$ el baricentro del triángulo. Para cada valor del ángulo $\angle BAC$, ¿cuántos triángulos no semejantes se pueden encontrar tales que $AEGF$ es un cuadrilátero cíclico?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre