Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1242
Sea $ABCD$ una pirámide de base triangular cuyas aristas $AB$ y $CD$ tienen longitudes $a$ y $b$ respectivamente. La distancia entre las rectas que se cruzan $AB$ y $CD$ es $d$ y el ángulo entre ellas es $\omega$. La pirámide se divide en dos sólidos mediante el plano $\varepsilon$, paralelo a las rectas $AB$ y $CD$. La razón entre las distancias a $\varepsilon$ desde $AB$ y $CD$ es igual a $k$. Hallar la razón entre los volúmenes de estos dos sólidos.

Nota: Las rectas $AB$ y $CD$ en el espacio se cruzan si no son paralelas ni se cortan. El ángulo que forman $AB$ y $CD$ es el ángulo que forman sus proyecciones ortogonales sobre el plano paralelo $\varepsilon$.

Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1239
En una pirámide de base triangular $ABCD$, el vértice $D$ está conectado con $D_0$, el baricentro del triángulo $ABC$. Se dibujan rectas paralelas a $DD_0$ que pasan por $A$, $B$ y $C$ y cortan a los planos $BCD$, $CAD$ y $ABD$ en puntos $A_1$, $B_1$ y $C_1$, respectivamente. Demostrar que el volumen de $ABCD$ es un tercio del volumen de $A_1B_1C_1D_0$. ¿Es cierto el mismo resultado si $D_0$ es cualquier punto del interior del triángulo $ABC$?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1236
Se consideran las rectas tangentes a la circunferencia inscrita de un triángulo $ABC$ que son paralelas a los lados del triángulo. Si recortamos el triángulo $ABC$ a lo largo de ellas, se obtienen otros tres triángulos y en cada uno de ellos se considera también la circunferencia inscrita. Hallar la suma de las áreas de los cuatro círculos inscritos en términos de las longitudes de los lados de $ABC$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1234
Un pentágono convexo $ABCDE$ tiene la propiedad de que el área de cada uno de los cinco triángulos $ABC$, $BCD$, $CDE$, $DEA$ y $EAB$ es uno. Demostrar qeu todos los pentágonos con esta propiedad tienen la misma área y calcularla. Demostrar, además, que hay una cantidad infinita de pentágonos no congruentes con dicha propiedad.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1231
Un tetraedro $ABCD$ verifica $AB=CD$, $AC=BD$ y $AD=BC$. Demostrar que sus caras son triángulos acutángulos.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre