Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1202
Construir con regla y compás un triángulo rectángulo conociendo la hipotenusa $c$ y que la mediana que une el vértice del ángulo recto con el punto medio de la hipotenusa es la media geométrica de los dos catetos del triángulo.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1191
En un triángulo se traza una recta tangente a la circunferencia inscrita que es paralela a uno de los lados y corta a los otros dos en los puntos $X$ e $Y$. ¿Cuál es la mayor distancia posible $XY$ en términos del perímetro del triángulo?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1187
Sea $\Gamma$ la circunferencia circunscrita al triángulo $ABC$. Sean $X$, $Y$ y $Z$ los puntos medios de los arcos $BC$, $AC$ y $AB$ de $\Gamma$ que no contienen a $A$, $B$ y $C$, respectivamente. Supongamos que $YZ$ corta a $AB$ en $D$ y que $XY$ corta a $BC$ en $E$. Demostrar que $DE$ es paralela a $AC$ y que pasa por el incentro de $ABC$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1181
Un círculo de centro $O$ está inscrito en un cuadrilátero $ABCD$. Demostrar que \[\angle AOB+\angle COD=180^\circ.\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1179
Sea $ABCD$ un cuadrilátero convexo. Sean $A'$ y $C'$, respectivamente, los pies de las perpendiculares por $A$ y $C$ a la diagonal $BD$ y sean $B'$ y $D'$, respectivamente, los pies de las perpendiculares por $B$ y $D$ a la diagonal $AC$. Demostrar que el cuadrilátero $A'B'C'D'$ es semejante a $ABCD$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre