Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1162
Dado un círculo $C$ y una recta $r$ que pasa por su centro $O$, consideremos un punto variable $P$ en $r$. Sea $K$ el círculo centrado en $P$ que pasa por $O$ y sea $T$ el punto donde una recta tangente común a $C$ y $K$ toca a $K$. Hallar el lugar geométrico de $T$ al variar $P$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1161
Dado un cuadrilátero convexo $ABCD$, se consideran el cuadrilátero $A'B'C'D'$ tal que $A$ es el punto medio de $DA'$, $B$ es el punto medio de $AB'$, $C$ es el punto medio de $BC'$ y $D$ es el punto medio de $CD'$. Demostrar que el área de $A'B'C'D'$ es cinco veces el área de $ABCD$.
pistasolución 1info
Pista. ¿Cuál es la razón entre las áreas de $BB'C'$ y $ABC$?
Solución. El triángulo $BB'C'$ (azul) tiene doble área que el $ABC$ (naranja) ya que tiene base doble $BC'=2BC$ y las mismas alturas respecto de estas bases (las distancias de $A$ y $B'$ a la recta $BC$ coinciden pues el punto medio de $AB'$ pertenece a la recta. De la misma manera, los triángulos $AA'B'$, $CC'D'$ y $DD'A'$ tiene área el doble que las de $ABD$, $BCD$ y $CDA$, respectivamente. Por lo tanto, la suma de las áreas de $AA'B'$, $BB'C'$, $CC'D'$ y $DD'A'$ es cuatro veces la del cuadrilátero $ABCD$. Si le sumamos una vez más el área de $ABCD$, tenemos el área de $A'B'C'D'$ es cinco veces el área de $ABCD$.imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1156
  1. Los puntos $A$ y $B$ se mueven con la misma velocidad angular constante y en el sentido de las agujas del reloj a lo largo de sendas circunferencias de centros $O_a$ y $O_b$. Demostrar que el vértice $C$ de un triángulo equilátero $ABC$ también se mueve uniformemente recorriendo cierta circunferencia.
  2. Si $ABC$ es un triángulo equilátero y un punto $P$ cumple $AP=2$ y $BP=3$, hallar el valor máximo posible de $CP$.
pistasolución 1info
Pista. Para el apartado (a), utiliza números complejos. Para el apartado (b), utiliza la desigualdad de Ptolomeo, que nos dice que si $A,B,C,D$ son puntos cualesquiera del plano, entonces $AC\cdot BD\leq AB\cdot CD+AC\cdot BD$.
Solución. Usando números complejos, expresaremos los centros $O_a$ y $O_b$ como $a_0,b_0\in\mathbb{C}$, de donde las trayectorias $a(t)$ y $b(t)$ de los puntos $A$ y $B$ en función del tiempo $t$ se escriben como \[a(t)=a_0+re^{it},\qquad b(t)=b_0+se^{it},\] donde $r,s\in\mathbb{C}$ son números complejos no nulos cuyos módulos son los radios de las circunferencias. Cambiando $A$ por $B$ si fuera necesario, podemos suponer que el punto $C$ se obtiene rotando el punto $B$ un ángulo $\frac{\pi}{3}$ en el sentido antihorario con centro en $A$, lo que nos da la trayectoria \begin{align*} c(t)&=a(t)+e^{i\pi/3}(b(t)-a(t))=a_0+re^{it}+e^{i\pi/3}(b_0-a_0+(r-s)e^{it})\\ &=[a_0+e^{i\pi/3}(b_0-a_0)]+[r+e^{i\pi/3}(r-s)]e^{it}. \end{align*} Esta vuelve a ser la trayectoria de una circunferencia y además muestra que su centro $a_0+e^{i\pi/3}(b_0-a_0)$ forma un triángulo equilátero con los centros $O_a$ y $O_b$. Notemos que $c(t)$ podría ser constante si la circunferencia tiene radio cero, es decir si $r+e^{i\pi/3}(r-s)=0$.

El apartado (b) es consecuencia de la desigualdad de Ptolomeo aplicada a los cuatro puntos $A,C,B,P$, que nos dice que \[CP\cdot AB\leq AP\cdot BC+BP\cdot AC\ \Longleftrightarrow\ CP\leq AP+BP=2+3=5,\] ya que $AB=BC=CA$. Además, sabemos que si $ACBP$ es un cuadrilátero cíclico, entonces la igualdad se alcanza. Por tanto, el máximo anterior $CP=5$ se alcanza cuando $P$ está en el arco menor $AB$ de la circunferencia circunscrita del triángulo $ABC$. En este caso, el triángulo $ABP$ tiene lados $AP=2$ y $BP=3$ que forman un ángulo de $120^\circ$ por la propiedad del arco capaz, de forma que el teorema del coseno nos da necesariamente \[AB^2=2^2+3^2-2\cdot 2\cdot 3\cos(120^\circ)=19.\] Deducimos así que el máximo $CP=5$ se alcanza efectivamente para un triángulo de lado $\sqrt{19}$ cuando el punto $P$ está en el arco menor $AB$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1151
En el triángulo $ABC$ de área 100, $M$ es el punto medio del lado $AC$ y $P$ es un punto del lado $AB$ tal que el triángulo $AMP$ tiene área $36$. La paralela a $PM$ por $B$ corta al lado $AC$ en $Q$. Determinar el área del triángulo $MPQ$.
pistasolución 1info
Pista. Descompón $ABC$ en $AMP$, $BPM$ y $MBC$ y observa que $BPM$ y $MPQ$ tienen el mismo área.
Solución. El triángulo $ABC$ se puede descomponer en los triángulos $AMP$, $BPM$ y $MBC$. Sabemos que el área de $AMP$ es $36$ y la de $MBC$ es $50$ (por ser $M$ el punto medio de $AC$); como el área total es 100, deducimos que $BPM$ tiene área $100-50-36=14$. Finalmente, hay que darse cuenta de que $BPM$ y $MPQ$ tienen el mismo área ya que $BQ$ es paralela a $MP$. Por tanto, la respuesta es $14$.imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1146
Los puntos $A=(a,11)$ y $B=(b,37)$ determinan, junto con el origen de coordenadas, un triángulo equilátero. Determinar el producto $ab$.
pistasolución 1info
Pista. La condición $OA=OB=AB$ te da un sistema cuadrático de dos ecuaciones con las dos incógnitas $a$ y $b$. Resuélvelo.
Solución. Usando el teorema de Pitágoras y teniendo en cuenta el origen $O=(0,0)$, las longitudes de los lados al cuadrado son \[OA^2=a^2+11^2,\qquad OB^2=b^2+37^2,\qquad AB^2=(a-b)^2+26^2.\] Por tanto, podemos resumir la condición de ser equilátero en un sistema de dos ecuaciones con las dos incógnitas $a$ y $b$: \begin{align*} OA=OB&\ \Longleftrightarrow\ a^2-b^2=1248\\ OA=AB&\ \Longleftrightarrow\ 2ab-b^2=555. \end{align*} Como cambiar ambas incógnitas de signo sigue produciendo una solución y no cambia el producto $ab$, podemos suponer que $a$ es positivo y despejar de la primera ecuación $a=\sqrt{1248+b^2}$. Sustituyendo esto en la segunda, obtenemos que \begin{align*} 2b\sqrt{1248+b^2}-b^2=555&\ \Longleftrightarrow\ 4b^2(1248+b^2)=(555+b^2)^2\\ &\ \Longleftrightarrow\ 3(b^4+3882 b^2-308025=0\\ &\ \Longleftrightarrow\ b^4+1294 b^2-102675=0. \end{align*} Esta ecuación se puede resolver como una bicuadrada, lo que nos da $b^2=75$ o bien $b^2=-1379$. Esta segunda solución hemos de descartarla ya que $b$ es un número real. Por tanto, de la ecuación original $2ab-b^2=555$, deducimos finalmente que \[ab=\tfrac{1}{2}(555+b^2)=\tfrac{1}{2}(555+75)=315.\]

Nota. No es difícil terminar el razonamiento y ver que las soluciones al problema son \[(a,b)=\left(21\sqrt{3},5\sqrt{3}\right)\qquad\text{y}\qquad (a,b)=\left(-21\sqrt{3},-5\sqrt{3}\right).\]

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre