Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 935
Por los puntos medios de dos lados de un triángulo $ABC$ trazamos las medianas y unimos los puntos que trisecan el tercer lado con el vértice opuesto. Así, en el interior del triángulo se obtiene una pajarita (dos triángulos unidos por un vértice). Se pide calcular la fracción del área total del triangulo que representa la pajarita.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 932
Deslizamos un cuadrado de $10\text{cm}$ de lado por el plano $OXY$ de forma que los vértices de uno de sus lados estén siempre en contacto con los ejes de coordenadas, uno con el eje $OX$ y otro con el eje $OY$. Determina los lugares geométricos que en ese movimiento describen:
  1. El punto medio del lado de contacto con los ejes.
  2. El centro del cuadrado.
  3. Los vértices del lado de contacto y del opuesto en el primer cuadrante.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 928
Sea $ABC$ un triángulo y sean $P$ y $Q$ los puntos de intersección de la recta paralela a $BC$ que pasa por $A$ con las bisectrices exteriores de los ángulos $\angle B$ y $\angle C$, respectivamente. La perpendicular a $BP$ por $P$ y la perpendicular a $CQ$ por $Q$ se intersecan en $R$. Si $I$ es el incentro de $ABC$, mostrar que $AI=AR$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 924
Sobre un rectángulo $ABCD$ se dibujan triángulos equiláteros $BCX$ y $DCY$ de modo que cada uno comparte puntos con el interior del rectángulo. La recta $AX$ corta a la recta $CD$ en $P$. La recta $AY$ corta a la recta $BC$ en $Q$. Demostrar que el triángulo $APQ$ es equilátero.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 923
Sea $ABC$ un triángulo acutángulo, $\omega$ su circunferencia inscrita de centro $I$, $\Omega$ su circunferencia circunscrita de centro $O$, y $M$ el punto medio de la altura $AH$, donde $H$ pertenece al lado $BC$. La circunferencia $\omega$ es tangente a este lado $BC$ en el punto $D$. La recta $MD$ corta a $\omega$ en un segundo punto $P$ y la perpendicular desde $I$ a $MD$ corta a $BC$ en $N$. Las rectas $NR$ y $NS$ son tangentes a $\Omega$ en $R$ y $S$, respectivamente. Probar que los puntos $R,P,D,S$ están en una misma circunferencia.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre