Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 886problema obsoleto
Dos semirrectas tienen su común origen en el punto $O$. Se considera una circunferencia $C_1$ tangente a ambas semirrectas cuyo centro está situado a distancia $d_1$ de $O$ y cuyo radio es $r_1$. Se construyen sucesivamente las circunferencias $C_n$, de modo que $C_n$ es tangente a las semirrectas, tangente exterior a $C_{n−1}$ y tal que la distancia de su centro a $O$, $d_n$, es menor que $d_{n−1}$ para $n\gt 1$. Halla la suma de las áreas de los círculos limitados por las circunferencias $C_n$ para todo $n$ en función de $r_1$ y $d_1$.
pistasolución 1info
Pista. Date cuenta de que existe una homotecia que lleva $C_k$ en $C_{k+1}$ para todo $k$. ¿Cuál es la razón de esta homotecia en términos de $r_1$ y $d_1$?
Solución. Sea $O_1$ el centro de $C_1$, que está sobre la bisectriz de las semirrectas dadas. Entonces, para pasar de la circunferencia $C_1$ a $C_2$, podemos hacer una homotecia de centro $O$ que lleva uno de los puntos de corte de $C_1$ con la bisectriz en el otro. Como el punto más alejado está a distancia $d_1+r_1$ y el más cercano a distancia $d_1-r_1$, la razón de la homotecia es $\lambda=\frac{d_1-r_1}{d_1+r_1}$. Como la homotecia transforma las áreas en un factor $\lambda^2$ y lleva cada circunferencia $C_k$ en $C_{k+1}$, tenemos que \[\sum_{k=1}^n\mathrm{Area}(C_k)=\sum_{k=1}^n\lambda^{2k-2}\mathrm{Area}(C_1)=\frac{\pi r_1^2(1-\lambda^{2n+2})}{1-\lambda^2},\] donde hemos usado la fórmula de la suma de los términos de una progresión geométrica. En el límite de esta suma cuando $n\to\infty$ el término $\lambda^{2n+2}$ tiene límite $0$ (ya que $0\lt \lambda\lt 1$) y el resultado es \begin{align*} \sum_{k=1}^\infty\mathrm{Area}(C_k)&=\frac{\pi r_1^2}{1-\lambda^2}=\frac{\pi r_1^2(d_1+r_1)^2}{(d_1+r_1)^2-(d_1-r_1)^2}\\ &=\frac{\pi r_1^2(d_1+r_1)^2}{4r_1d_1}=\frac{\pi r_1}{4d_1}(d_1+r_1)^2. \end{align*}imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 882
Sea $ABCD$ un cuadrilátero cíclico cuyas diagonales $AC$ y $BD$ son perpendiculares. Sean $O$ el circuncentro de $ABCD$, $K$ la intersección de sus diagonales, $L\neq O$ la intersección de las circunferencias circunscritas a $OAC$ y $OBD$, y $G$ la intersección de las diagonales del cuadrilátero cuyos vértices son los puntos medios de $ABCD$. Probar que $O$, $K$, $L$ y $G$ están alineados.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 880
La circunferencia $\Gamma$ inscrita al triángulo escaleno $ABC$ es tangente a los lados $BC$, $CA$ y $AB$ en los puntos $D$, $E$ y $F$, respectivamente. La recta $EF$ corta a la recta $BC$ en $G$. La circunferencia de diámetro $GD$ corta a $\Gamma$ en $R$ ($R\neq D$). Sean P y Q ($P\neq R$, $Q\neq R$) las intersecciones de $BR$ y $CR$ con $\Gamma$, respectivamente. Las rectas $BQ$ y $CP$ se cortan en $X$. La circunferencia circunscrita a $CDE$ corta al segmento $QR$ en $M$ y la circunferencia circunscrita a $BDF$ corta al segmento $PR$ en $N$. Demostrar que las rectas $PM$, $QN$ y $RX$ son concurrentes.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 877
Sea $P$ un punto cualquiera de la bisectriz del ángulo $A$ de un triángulo $ABC$ y sean $A',B',C'$ puntos de las rectas $BC,CA,AB$, respectivamente, tales que $PA'$ es perpendicular a $BC$, $PB'$ es perpendicular a $CA$ y $PC'$ es perpendicular a $AB$. Demostrar que $PA'$ y $B'C'$ se cortan sobre la mediana $AM$, siendo $M$ el punto medio de $BC$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 875
Sea $ABCD$ un cuadrilátero convexo y sea $P$ la intersección de sus diagonales $AC$ y $BD$ y supongamos que cumple $\angle APD=60^\circ$. Sean $E,F,G,H$ los puntos medios de los lados $AB,BC,CD,DA$, respectivamente. Hallar el mayor número real positivo $k$ tal que \[EG+3HF\geq kd+(1-k)s,\] siendo $s$ el semiperímetro de $ABCD$ y $d$ la suma de las longitudes de las diagonales.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre