OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Nota. En realidad hemos demostrado una propiedad un poco más general: si la sección producida es un paralelogramo, entonces debe ser un rectángulo. La propiedad de ser rombo distrae más que aporta, ya que si intentamos usar argumentos sobre la longitud de los lados de $PQRS$, los razonamientos se complican y no parece que lleven a una solución sencilla.
Como $P$ está en el segmento $MR$ y $M$ es el punto medio de $RS$, se sigue que $PR\lt PS$; además, se tiene que $\angle PRB$ es agudo mientras que $\angle CSR=180-\angle PRB$ es obtuso. Esto nos dice que si giramos $180^\circ$ el triángulo $PRB$ respecto de $P$ obtenemos un triángulo $PR'B'$ contenido en $PCS$, luego ciertamente el área de $PBR$ es menor que el área de $PCS$ y hemos terminado la demostración.