Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 819
En un triángulo de lados $a,b,c$ el lado $a$ es la media aritmética de $b$ y $c$. Probar las siguientes afirmaciones:
  1. $0^\circ\leq A \leq 60^\circ$.
  2. La altura relativa al lado $a$ es tres veces el inradio $r$.
  3. La distancia del circuncentro al lado $a$ es $R-r$, siendo $R$ el circunradio.
pistasolución 1info
Pista. (a) Usa el teorema del coseno. (b) Usa que el área del triángulo es $\frac{1}{2}(a+b+c)r$. (c) Expresa $R-r$ y $OM$ en función de los lados del triángulo.
Solución. Para resolver el primer apartado, usaremos el teorema del coseno, del que podemos despejar el coseno del ángulo $A$ como \begin{align*} \cos(A)&=\frac{b^2+c^2-a^2}{2bc}=\frac{b^2+c^2-\left(\frac{b+c}{2}\right)^2}{2bc}\\ &=\frac{3b^2+3c^2-2bc}{8bc}=\frac{3}{8}\left(\frac{b}{c}+\frac{c}{b}\right)-\frac{1}{4}\geq\frac{3}{8}\cdot 2-\frac{1}{4}=\frac{1}{2}, \end{align*} donde se ha usado que la suma de un número positivo y su inverso es siempre mayor o igual que $2$. Como $A$ es un ángulo entre $0^\circ$ y $180^\circ$, de la desigualdad anterior deducimos que $0\leq A\leq 60^\circ$.

En cuanto al apartado (b), calculamos el área del triángulo de dos formas distintas. Por un lado, $S=\frac{1}{2}(a+b+c)r$ y por otro $S=\frac{1}{2} ah_a$, siendo $h_a$ la altura relativa al vértice $A$. Sustituyendo $a=\frac{b+c}{2}$ en ambas expresiones e igualándolas, se llega directamente a que $h_a=3r$.

Finalmente, para el apartado (c) usaremos la fórmula $abc=4RS$ y la fórmula de Herón, de forma que \begin{align*} R-r&=\frac{abc}{4S}-\frac{2S}{a+b+c}=\frac{abc(a+b+c)-8S^2}{4(a+b+c)S}\\ &=\frac{abc(a+b+c)-\frac{1}{2}(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}{4(a+b+c)S}\\ &=\frac{2abc-(-a+b+c)(a-b+c)(a+b-c)}{8S}=\frac{(b+c)bc-\frac{b+c}{2}(\frac{-b+3c}{2})(\frac{3b-c}{2})}{8S}\\ &=\frac{(b+c)(3b^2-2bc+3c^2)}{64S}=\frac{abc\cos(A)}{4S}=R\cos(A). \end{align*} Si $O$ es el circuncentro y $M$ el punto medio de $BC$, entonces el triángulo $BOM$ es rectángulo y tiene $\angle COM=A$ ya que este es la mitad del ángulo central. Por tanto, en este triángulo rectángulo se cumple que $\cos(A)=\frac{OM}{OB}$, es decir, $OM=OB\cos(A)=R\cos(A)$ y hemos terminado.

Nota. Probablemente, la demostración del apartado (c) no sea la más elegante, pero es sistemática en el sentido de que expresamos $R-r$ en función únicamente de los lados $a,b,c$. Luego se puede expresar también $OM$ en términos de estos lados y usando la condición $a=\frac{b+c}{2}$ se tiene que conseguir probar el enunciado. En la solución propuesta, se ha introducido además el área y el coseno de $A$ como atajo para evitar más cálculos.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 817
Diremos que un triángulo es multiplicativo si el producto de las longitudes de dos de sus lados es igual a la longitud del tercer lado. Sean $A,B,C$ tres vértices consecutivos de un polígono regular de $n$ lados con todos sus lados de longitud $1$. Las $n-3$ diagonales que salen del vértice $B$ dividen al triángulo $ABC$ en $n-2$ triángulos más pequeños. Probar que cada uno de esos triángulos es multiplicativo.
imagen
pistasolución 1solución 2info
Pista. Fíjate en que los ángulos en el vértice $B$ de todos los triángulos son iguales, con lo que tienes un montón de bisectrices en la figura.
Solución. Llamamos $a_1,a_2,\ldots,a_{n-1}$ a los lados de los $n-2$ triángulos que parten de $B$ y llamamos $d_1,d_2,\ldots,d_{n-2}$ a los lados opuestos al vértice $B$, como se muestra en la figura. El ángulo en el vértice $B$ tiene el mismo valor para los $n-2$ triángulos ya que es el arco capaz que subtiende a un lado del polígono desde la circunferencia circunscrita al triángulo. Vamos a probar por inducción sobre $k$ que se cumple que $a_k\,a_{k+1}=d_k$ para todo $k$ desde $1$ hasta $n-2$, lo que demostrará que los triángulos son multiplicativos y habremos terminado.

Para $k=1$, está claro que $a_1=1$ (es un lado del polígono) y $a_2=d_2$ por simetría de este primer triángulo respecto de la mediatriz del lado $BC$. Supongamos entonces cierto que $a_{k-1}a_k=d_{k-1}$ para cierto $k$ y probemos que $a_ka_{k+1}=d_k$. Para ello, consideramos el triángulo que se obtiene al unir los triángulos $(k-1)$-ésimo y $k$-ésimo, que tiene por lados $a_{k-1}$, $a_{k+1}$ y $d_{k-1}+d_k$, de forma que $a_k$ es la longitud de una de sus bisectrices interiores. El teorema de la bisectriz (ver la nota) nos da entonces el resultado deseado: \[\frac{a_{k+1}}{d_k}=\frac{a_{k-1}}{a_{k-1}a_k}=\frac{1}{a_k}\ \Leftrightarrow\ a_ka_{k+1}=d_k.\]imagen

Nota. El teorema de la bisectriz nos dice que la bisectriz interior de un triángulo desde un vértice divide al lado opuesto en dos segmentos proporcionales a los lados correspondientes.

Solución. Llamamos $a_1,a_2,\ldots,a_{n-1}$ a los lados de los $n-2$ triángulos que parten de $B$ y llamamos $d_1,d_2,\ldots,d_{n-2}$ a los lados opuestos al vértice $B$, como se muestra en la figura. Estos $n-2$ triángulos tienen el mismo ángulo $\alpha$ en el vértice $B$ ya que es el arco capaz que subtiende a un lado del polígono desde la circunferencia circunscrita al triángulo. Este ángulo viene dado además por $\alpha=\angle BAC$. Los $n-2$ triángulos también tienen altura común, que es la altura del triángulo $ABC$ desde el vértice $B$ y está dada por $h=\mathrm{sen}(\angle ABC)=\mathrm{sen}(\alpha)$.

Consideremos el triángulo de lados $a_k,a_{k+1},d_k$ y calculemos su área $S_k$ de dos formas distintas. Por un lado, como la mitad de la base por la altura y, por otro, como la mitad del producto de dos lados por el seno del ángulo que forman: \[S_k=\frac{d_kh}{2}=\frac{a_ka_{k+1}}{2}\mathrm{sen}(\alpha)\ \Longleftrightarrow\ a_ka_{k+1}=d_k,\] luego el triángulo es multiplicativo.

imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 815
Demostrar que, en un triángulo $ABC$, la circunferencia inscrita divide a la mediana desde $B$ en tres partes iguales si, y solo si, \[\frac{a}{5}=\frac{b}{10}=\frac{c}{13}.\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 814
Sea $ABCD$ un cuadrilátero cualquiera. Sean $P$ y $Q$ los puntos medios de las diagonales $BD$ y $AC$, respectivamente. Las paralelas por $P$ y $Q$ a la otra diagonal se cortan en $O$. Si unimos $O$ con las cuatro puntos medios de los lados $X$, $Y$, $Z$ y $T$ se forman cuatro cuadriláteros: $OXBY$, $OYCZ$, $OZDT$ y $OTAX$. Probar que los cuatro cuadriláteros tienen la misma área.
imagen
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 809
En un triángulo $ABC$, sean $A’$ el pie de la altura relativa al vértice $A$ y $H$ el ortocentro.
  1. Dado un número real positivo $k$ tal que $\frac{AA'}{HA'}=k$, encontrar la relación entre los ángulos $B$ y $C$ en función de $k$.
  2. Si $B$ y $C$ son fijos, hallar el lugar geométrico del vértice $A$ para cada valor de $k$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre